当前位置:问答库>考研试题

2018年同济大学数学系396经济类联考综合能力之工程数学—线性代数考研基础五套测试题

  摘要

一、解答题

1.

为三维单位列向量,并且

证明:

(Ⅰ)齐次线性方程组Ax=0有非零解; (Ⅱ)A

相似于矩阵

故Ax=0有非零解.

(Ⅱ)由(Ⅰ

)知向量.

又且

另外,由

故可知

为A 的特征值

,为4的2重特征值

为对应的特征向量.

为A 的3个

为4的单重特征值.

故A

有零特征值

的非零解即为

对应的特征

【答案】(Ⅰ)由于A 为3阶方阵,且

为两个正交的非零向量,从而线性无关.

线性无关的特征向量,

2.

设矩阵.

【答案】

即A

相似于矩阵

求A 的特征值,并讨论A 是否可对角化? 若A 可对角化,则写出其对角

专注考研专业课13年,提供海量考研优质文档!

于是A 的3个特征值为(Ⅰ)当

时,A 有3个不同特征值

,故4

可对角化,且可对角化为

(Ⅱ)当a=0

此时A 有二重特征值1,

仅对

应1个线性无关的特征向量,故此时A 不可对角化

.

(Ⅲ)当

时,

此时

A

有二重特征值

仅对应1个线性无关的特征向量,故此时

A 不可对角化.

3.

已知矩阵可逆矩阵P ,使

若不相似则说明理由。

试判断矩阵A 和B 是否相似,若相似则求出

【答案】由矩阵A 的特征多项式

得到矩阵A 的特征值是当

时,由秩

有2个线性无关的解,即

时矩阵A 有2个线性无关的特征向量,矩阵

A 可以相似对角化,因此矩阵A 和B 不相似。

专注考研专业课

13

年,提供海量考研优质文档!

4. 设三阶方阵A

、B

满足

的值.

其中E 为三阶单位矩阵

.

求行列

【答案】由矩阵知则. 可

逆. 又故即

所以即而

二、计算题

5. 按自然数从小到大为标准次序,求下列各排列的逆序数:

(1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (4)2 4 1 3;

(5)1 3... (2n-1) 2 4 ... (2n ); (6)1 3... (2n-1) (2n ) (2n-2)... 2. 【答案】(1)此排列为自然排列,其逆序数为0;

(2)此排列的首位元素的逆序数为0; 第2位元素1的逆序数为1; 第3位元素3的逆序数为1; 末位元素2的逆序数为2, 故它的逆序数为0+1+1+2=4;

(3)此排列的前两位元素的逆序数均为0; 第3位元素2的逆序数为2; 末位元素1的逆序数为3, 故它的逆序数为0+0+2+3=5;

(4)类似于上面,此排列的从首位元素到末位元素的逆序数依次为0, 0, 2, 1,故它的逆序数为0+0+2+1=3;

(5)注意到这2n 个数的排列中,前n

位元素之间没有逆序对. 第n+l位元素2与它前面的n-l 个数构成逆序对,故它的逆序数为n-l :同理,第n+2倍元素4的逆序数为n-2;; 末位元素2n 的逆序数为0. 故此排列的逆序数为

(6)与(5)相仿,此排列的前n+1位元素没有逆序对;第n+2位元素(2n-2)的逆序数为