当前位置:问答库>考研试题

2018年武汉轻工大学动物科学与营养工程学院314数学(农)之工程数学—线性代数考研基础五套测试题

  摘要

一、解答题

1.

为三维单位列向量,并且

证明:

(Ⅰ)齐次线性方程组Ax=0有非零解; (Ⅱ)A

相似于矩阵

故Ax=0有非零解.

(Ⅱ)由(Ⅰ

)知向量.

又且

另外,由

故可知

为A 的特征值

,为4的2重特征值

为对应的特征向量.

为A 的3个

为4的单重特征值.

故A

有零特征值

的非零解即为

对应的特征

【答案】(Ⅰ)由于A 为3阶方阵,且

为两个正交的非零向量,从而线性无关.

线性无关的特征向量,

即A

相似于矩阵

2. 设n 阶实对称矩阵A

满足

(Ⅰ)求二次型(Ⅱ

)证明[!

【答案】

(Ⅰ)设

由于

从而

的规范形;

且秩

的值.

即或

因为A 是

是正定矩阵,

并求行列式

为矩阵A 的特征值,

对应的特征向量为

又因

故有

解得

专注考研专业课13年,提供海量考研优质文档!

实对称矩阵,所以必可对角化

,且秩

于是

那么矩阵A 的特征值为

:1

(k 个),-1(n-k 个). 故二次型

(Ⅱ)因为

3.

已知矩阵可逆矩阵P

,使

若不相似则说明理由.

的规范形为

所以矩阵B

的特征值是

由于B 的特征值全大于0且B 是对称矩阵,因此B 是正定矩阵,且

试判断矩阵A

和B 是否相似,若相似则求出

【答案】由矩阵A 的特征多项式

得到矩阵A

的特征值是

由矩阵B 的特征多项式

得到矩阵B 的特征值也是

时,由秩

A 可以相似对角化. 而

有2个线性无关的解,即

时矩阵A 有2个线性无关的特征向量,矩阵

时矩阵B 只有

1个线性无

只有1个线性无关的解,即

关的特征向量,矩阵B 不能相似对角化. 因此矩阵A

和B 不相似

.

4. 设二次型矩阵A 满足AB=0, 其中

(Ⅰ)用正交变换化二次型

为标准形,并写出所用正交变换;

专注考研专业课13年,提供海量考研优质文档!

(Ⅱ

)求【答案】

(Ⅰ)由

知,矩阵B 的列向量是齐次方程组Ax=0的解向量.

值(至少是二重)

根据

值是0, 0, 6.

正交化,

令的特征向量为

则是

的线性无关的特征向量.

由此可知

,是矩阵A 的特征

故知矩阵A

有特征值因此,矩阵A 的特征

那么由实对称矩阵不同特征值的特征向量相互正交,

解出

再对,单位化,得

那么经坐标变换

二次型化为标准形(Ⅱ)因为

所以由

进而

于是

二、计算题

5.

取何值时,

齐次线性方程组

有非零解?

【答案】方程组的系数行列式必须为0.