2017年上海工程技术大学航空运输学院821运筹学[专业硕士]考研仿真模拟题
● 摘要
一、选择题
1. 某一线性规划问题中的某一资源的影子价格为4,当其可用量在其灵敏度允许范围内增加一,下述正确的是( )个单位时(假 定资源获得价格不变)。
A. 收益减少4个单位 B. 收益增加4个单位 C. 最优解不会发生变化 D. 产量一定增加4个单位 【答案】B
【解析】某种资源的影子价格的经济意义是在其他条件不变的情况下,单位资源变化所引起的目标函数的最 优值的变化。
2. 在求解整数规划问题时,不可能出现的是( )。
A. 唯一最优解 B. 无可行解 C. 多重最优解 D. 无穷多最优解 【答案】D
【解析】整数规划的可行解的个数是有限的,所以整数规划中不可能出现无穷多最优解。
3. 企业进行库存管理与控制的目标不包括以下( )。
A. 保证生产或销售的需要 B. 降低库存占用资金
C. 降低花在存储方面的管理费用 D. 较低的货损 【答案】D
【解析】货损与库存管理与控制无关,与采购的运输等其他环节有关。
4. 单纯形法求解最大化线性规划问题,如果存在“左端≥右端常数”的约束条件,对此约束条件应引入( )。
A. 可控变量 B. 环境变量 C. 人工变量 D. 松弛变量
【答案】D
【解析】约束方程为“≥”不等式,则可在“≥”不等式左端减去一个非负剩余变量(也可称松弛变量)。
二、填空题
5. 某整数规划模型,解其松弛问题得到最优解。若其中某分量x j 二场为非整数,用分支定界法求解时,针对 该分量构造的两个约束条件应为:_____。
【答案】
【解析】由分支定界法的原理可以,良容易得至“结果,其中〔b j 〕为不大于bj 的最大整数。
6. 若x 为某极大化线性规划问题的一个基可行解,
用非基变量表达其目标函数的形式为
则X 为该LP 最优解的条件是:_____。
【答案】
【解析】求极大化问题,则当所有非基变量的检验数均为非正时,即得最优解。线性规划最优时要求非基变 量检验数小于等于0,所以。
7. 若P (k )是f (x )在x (K )处的下降方向,则满足_____。
【答案】均有
【解析】若存在实数
,使对于任意的
均有下式成立:
,就称方向)为点的一个下降方向。
8. 在灵敏度分析时, 当LP 某系数发生变化使原最优单纯形表中的解为该LP 的一个正侧解,但不是可行解, 为求新的最优解, 处理办法是:_____。
【答案】对偶单纯形法
三、证明题
9. 对于M/M/c/∞/∞模型,
(1)
【答案】(l )因为所以
(2)
。
是每个服务台的平均服务率,试证:
,并给予直观解释。
为系统服务台的平均繁忙个数,即为服务台的强度,
;(2)
,其中
即其中,
为系统服务台的平均空闲个数,
则为系统服务台的
平均繁忙个数,即为服务台的强度。
10.在M/M/1/N/∞模型中,如
,试证
应为,于是。
【答案】系统在t 时刻的顾客数N (t )仍是一生灭过程,且有
当t=+∞时,由系统的稳定状态概率可得
11.现有一个线性规划问题(P 1):
, 其对偶问题的最优解为Y*=(y1, y2, y3, …ym )
另有一线性规划(P 2):
【答案】问题(P 2)的对偶问题为:
其中,d=(d 1, d 2, ...d 3) 。 求证:
T
相关内容
相关标签