当前位置:问答库>考研试题

2017年华北电力大学(保定)数理系808量子力学考研强化模拟题

  摘要

一、填空题

1. 描述微观粒子运动状态的量子数有_____; 具有相同n 的量子态,最多可以容纳的电子数为_____个。

【答案】

2. 不确定关系是微观粒子_____性质的数学表述。 【答案】波粒二象性

3. —个电子运动的旋量波函数为

则表示电子自旋向上、位置在处

的几率密度表达式为_____,表本电子自旋向下的几率的表达式为_____。 【答案】

4. 粒子在一维势阱中运动,波函数为

【答案】

5. 力学量算符必须是_____算符,以保证它的本征值为_____. 【答案】厄米;实数

【解析】力学量的测量值必须为实数,即力学量算符的本征值必须为实数,而厄米算符的本征值为实数,于是量子力学中就有了一条基本假设——量子力学中所有力学量算符都是厄米算符.

6. 总散射截面Q 与微分散射截面的关系是_____。 【答案】

的跃变条件为_____

。若势阱改为势垒

的跃变条件为_____。

二、简答题

7. 试表述量子态的叠加原理并说明叠加系数是否依赖于时空变量及其理由. 【答案】量子态的叠加原理:若仍然为粒子可能处于的态.

叠加系数不依赖于时空变量. 因为量子态的叠加原理已经明确说明了是任意线性组合,即表明了叠加系数不依赖于任何变量.

为粒子可能处于的态,那么这些态的任意线性组合

8. 斯特恩—革拉赫实验证明了什么? 【答案】(1)半整数内禀角动量在存在。 (2)空间量子化的事实。

(3)电子自旋磁矩需引入2倍关系。

9. 现有三种能级【答案】

请分别指出他们对应的是哪些系统。

对应一维无限深势阱;

对应

对应中心库仑势系统,例如氢原子;

一维谐振子.

10.量子力学中的力学量算符有哪些性质? 为什么需要这些性质?

【答案】量子力学中力学量算符为厄米算符,因而具有所有厄米算符的性质.

量子力学中力学量算符为厄米算符是由力学量算符本征值必须为实数决定的,比如,力学量的平均值为实数,因而对求平均值的式子求共轭后,其值应该不变,而求平均值时算符求共轭后式子值不变即要求算符为厄米算符.

11.电子在位置和自旋表象下,波函数【答案】

利用

的几率密度;

表示粒子在

如何归一化?解释各项的几率意义。

进行归一化,其中

的几率密度。

表示粒子在

|

12.坐标分量算符与动量分量算符的对易关系是什么?并写出两者满足的测不准关系。 【答案】对易关系为

测不准关系为

13.—个量子体系处于定态的条件是什么?

【答案】量子体系处于定态的条件是哈密顿算符不显含时间或能量取确定值。

14.简述波函数和它所描写的粒子之间的关系。

【答案】微观粒子的状态可用一个波函数完全描述,从这个波函数可以得出体系的所有性质。波函数一般应满足连续性、有限性和单值性三个条件。 微观粒子的状态波函数则在为

用算符的本征函数

展开

态中测量粒子的力学量^

得到结果为

的几率是

得到结果在

范围内的几率

三、证明题

15.设力学量A 不显含时间t ,证明在束缚定态下,【答案】设束缚定态为

即有:

因A 不显含时间t , 所以

16.(1)设(2)试将【答案】(1)

与pauli 算符对易,证明

表示成

的线性叠加. 其中为单位算符.

利用

化简可得:

(2)

因而有:

四、计算题

17.—质量为m 的粒子限制在宽度为2L 的无限深势阱当中运动. 势阱为现在势阱的底部加一微扰态的能量。

【答案】未施加微扰前,粒子本征波函数以及相应本证能量为

显然为非简并态。

微扰为故

其中试利用一阶微扰理论计算第n 激发