2018年湖南师范大学资源与环境科学学院605高等数学基础之工程数学—线性代数考研基础五套测试题
● 摘要
一、解答题
1. 设n 阶实对称矩阵A
满足
(Ⅰ)求二次型(Ⅱ
)证明[!
【答案】
(Ⅰ)设
由于
从而
的规范形;
是正定矩阵,
并求行列式
的值.
即或
贝
因为A 是
为矩阵A 的特征值,
对应的特征向量为
又因
故有
解得
且秩
实对称矩阵,所以必可对角化,
且秩于是
那么矩阵A 的特征值为:1(k 个),-1(n-k 个).
故二次型
(Ⅱ)因
为
2. 已知A 是3阶矩阵
,
(Ⅰ)写出与A 相似的矩阵B ; (Ⅱ)求A 的特征值和特征向量:
(Ⅲ)求秩
【答案】(Ⅰ)由于
是3维线性无关列向量,且
故
的规范形为
所以矩阵B 的特征值是
:
由于B 的特征值全大于0且B 是对称矩阵,因此B 是正定矩阵,
且
令
记
因
则有
线性无关,故P 可逆.
即A 与B 相似.
(Ⅱ
)由
A 的特征值为-1, -1,-1.
对于矩阵B ,
由
得
所以
可知矩阵B 的特征值为-1, -1,-1, 故矩阵
得特征向量
那么由:
即
是A 的特征向量,于是A 属于特征值-1
的所有特征向量是
全为0.
(Ⅲ
)由
知
故
芄中
不
3.
已知
二次型的秩为
2.
求实数a 的值;
求正交变换x=Qy使得f 化为标准型. 【答案】
⑴由
可得
,
则矩阵
解得B 矩阵的特征值为
:当
时,
解
得对应的特征向量为
专注考研专业课
13年,提供海量考研优质文档!
当
时,解
得对应的特征向量为
对于解得对应的特征向量为
:
将单位转化为:. 令X=Qy,
则
4
. 设线性方程m
【答案】对线性方程组的增广矩阵
试就
讨论方程组的解的悄况,
备解时求出其解.
作初等行变换
,如下
(
1
)当
即
且
时
则方程组有惟一答:
(
2)
当
且
即
且
时
则方程组有无穷多可得其一个特解
解.
此时原方程组与同解
,解得其基础解系为
为任意常数. 此时方程组无解. 时
故原方程组的通解为
(3)当(4)当
即
时
此时方程组无解.
二、计算题
相关内容
相关标签