当前位置:问答库>考研试题

2018年湖南师范大学资源与环境科学学院605高等数学基础之工程数学—线性代数考研基础五套测试题

  摘要

一、解答题

1. 设n 阶实对称矩阵A

满足

(Ⅰ)求二次型(Ⅱ

)证明[!

【答案】

(Ⅰ)设

由于

从而

的规范形;

是正定矩阵,

并求行列式

的值.

即或

因为A 是

为矩阵A 的特征值,

对应的特征向量为

又因

故有

解得

且秩

实对称矩阵,所以必可对角化,

且秩于是

那么矩阵A 的特征值为:1(k 个),-1(n-k 个).

故二次型

(Ⅱ)因

2. 已知A 是3阶矩阵

(Ⅰ)写出与A 相似的矩阵B ; (Ⅱ)求A 的特征值和特征向量:

(Ⅲ)求秩

【答案】(Ⅰ)由于

是3维线性无关列向量,且

的规范形为

所以矩阵B 的特征值是

由于B 的特征值全大于0且B 是对称矩阵,因此B 是正定矩阵,

则有

线性无关,故P 可逆.

即A 与B 相似.

(Ⅱ

)由

A 的特征值为-1, -1,-1.

对于矩阵B ,

所以

可知矩阵B 的特征值为-1, -1,-1, 故矩阵

得特征向量

那么由:

是A 的特征向量,于是A 属于特征值-1

的所有特征向量是

全为0.

(Ⅲ

)由

芄中

3.

已知

二次型的秩为

2.

求实数a 的值;

求正交变换x=Qy使得f 化为标准型. 【答案】

⑴由

可得

则矩阵

解得B 矩阵的特征值为

:当

时,

得对应的特征向量为

专注考研专业课

13年,提供海量考研优质文档!

时,解

得对应的特征向量为

对于解得对应的特征向量为

将单位转化为:. 令X=Qy,

4

. 设线性方程m

【答案】对线性方程组的增广矩阵

试就

讨论方程组的解的悄况,

备解时求出其解.

作初等行变换

,如下

1

)当

则方程组有惟一答:

2)

则方程组有无穷多可得其一个特解

解.

此时原方程组与同解

,解得其基础解系为

为任意常数. 此时方程组无解. 时

故原方程组的通解为

(3)当(4)当

此时方程组无解.

二、计算题