当前位置:问答库>考研试题

2017年吉林师范大学数学学院625高等代数考研导师圈点必考题汇编

  摘要

一、选择题

1. 设A 为4×3矩阵,常数,则

是非齐次线性方程组

的3个线性无关的解,

为任意

的通解为( )

【答案】C 【解析】由

于又显然有基础解系.

考虑到 2. 设次型.

A. B. C. D. 【答案】D

【解析】方法1 用排除法令

这时f (l ,1,1)=0,即f 不是正定的. 从而否定A ,B ,C. 方法2

所以当方法3 设

时,f 为正定二次型.

对应的矩阵为A ,则

为任意实数 不等于0 为非正实数 不等于-1 是

的一个特解,所以选C.

则当( )时,此时二次型为正定二

(否则与

是非齐次线性方程

组,所以有解矛盾)

的三个线性无关的解,所

以从而

的一个

是对应齐次线性方程组

的两个线性无关的解.

A 的3个顺序主子式为

所以当方法4令

时,A 的3个顺序主子式都大于0,则,为正定二次型,故选(D ).

所以f 为正定的.

3. 齐次线性方程组

的系数矩阵为A ,若存在3阶矩阵

【答案】C 【解析】若当C.

4. 设

A. 合同且相似 B. 合同但不相似 C. 不合同但相似 D. 不合同不相似 【答案】A

【解析】因为A ,B 都是实对称阵,且B 有4个特征值

使AB=0, 则( )

.

由AB=0, 用右乘两边,可得A=0, 这与A 卢)矛盾,从而否定B. ,D.

由AB=0,左乘

可得

矛盾,从而否定A ,故选

时,

则A 与B ( ).

又因为即A 也有4个特征值0,0,0,4. 因而存在正交阵

使

其中故A 〜B. 再由

是正交阵,知T 也是正交阵,从而有

且由①式得

因此A 与B 合同.

5. 设向量组线性无关,则下列向量组中,线性无关的是( )

【答案】C 【解析】方法1:令

则有

线性无关知,

该方程组只有零解方法2:对向量组C ,由于

从而

线性无关,且

因为

所以向量组

线性无关.

线性无关.

二、分析计算题

6. 用向量运算证明三角形三条边的垂直平分线相交于一点

.

【答案】设P 是

两条边AB 及AC 的两条垂直平分线的交点.F 是BC 的中点. 即要证明