2018年新疆农业大学草业与环境科学学院610大学数学2之工程数学—线性代数考研核心题库
● 摘要
一、解答题
1.
已知三元二次型
(Ⅰ)用正交变换把此二次型化为标准形,并写出所用正交变换; (Ⅱ)若A+kE:五正定,求k 的取值. 【答案】(Ⅰ)因为A 各行元素之和均为0,
即值
,
由征向量.
因为
是
的特征向量.
是
1的线性无关的特
,由此可知
是A 的特征
其矩阵A 各行元素之和均为0, 且满足
其中
可知-1是A 的特征值
,不正交,将其正交化有
再单位化,可得
那么令
则有
(Ⅱ)因为A 的特征值为-1, -1, 0, 所以A+kE的特征值为k-l , k-1,k , 由A+kE正定知其特征值都大于0,
得
2. 证明n
阶矩阵
与相似.
【答案】
设 分别求两个矩阵的特征值和特征向量为,
故A 的n 个特征值为
且A 是实对称矩阵,则其一定可以对角化,且
所以B 的n
个特征值也为
=-B的秩显然为1,故矩阵B 对应n-1
重特征值
对于n-1
重特征值由于矩阵(0E-B )
的特征向量应该有n-1个线性无关,进一步
矩阵B 存在n 个线性无关的特征向量,即矩阵B 一定可以对角化,且从而可
知n
阶矩阵
与相似.
3.
已知,求
【答案】
令
则且有
1
所以
4.
设矩阵.
【答案】
求A 的特征值,并讨论A 是否可对角化? 若A 可对角化,则写出其对角
于是A 的3
个特征值为(Ⅰ)当
且
时,A 有3个不同特征值,故4可对角化,且可对角化为
相关内容
相关标签