2017年华中科技大学环境科学与工程学院828运筹学考研仿真模拟题
● 摘要
一、简答题
1. 简述求解整数规划分枝定界法的基本思想。
【答案】设有最大化的整数规划问题A ,与它对应的线性规划为问题B ,从解问题B 开始,若其最优解不符合A 的整数条件,那么B 的最优目标函数必是A 的最优目标函数z*的上界,记作; 而A 的任意可行解的目标函数值将是z*的一个下界
; 。分支定界法就是将B 的可行域分成
子区域(称为分支)的方法,逐步减小和增大:, 最终求到z*。
2. 在解决实际问题时应如何运用启发式策略? 除本书上列出的几个启发式策略之外,你认为还有什么样的策略可以使用?
【答案】在解决实际问题时,可根据实际问题的性质和要求来选用某一启发式策略; 为得到理想效果,也可将几个策略联合起来使用。除本书上列出的几个启发式策略之外,还有计算机仿真、模拟策略、类比策略、近似策略等可以使用。
3. 一个运输问题,如果其单位运价表的某一行元素分别加上一个常数,最优调运方案是否发生变化,试说明理由(用表或直接用公式);
【答案】最优方案不会发生变化。因为在计算任意空格的检验数时,若其通过变化行的一个基格,则其必经过两个基格,
则
4. 试写出标准指派问题的线性规划问题。
【答案】
A ij 表示工作人员i 做工作j 时的工作效益 则得线性规划模型为:
最优方案不发生变化。
二、证明题
5. 对于M/M/c/∞/∞模型,
(1)
【答案】(l )因为所以
(2)
。
是每个服务台的平均服务率,试证:
,并给予直观解释。
为系统服务台的平均繁忙个数,即为服务台的强度,
;(2)
,其中
即其中,
为系统服务台的平均空闲个数,
则为系统服务台的
平均繁忙个数,即为服务台的强度。
6. 对于M/M/1/N/∞模型,试证
,并对上式给予直观的解释。
【答案】若令,
则有
所以
,即
此系统的等待空间有限制,即一旦顾客满N 个,新来的顾客就无法进入系统,此时到达率为零。故这里需 要求出实际进入系统的平均到达率
。由于正在被服务的顾客平均数为
另外,在单位时间内实际进入服务系统的顾客平均数
为
。因此,
。
7. 证明:矩阵对策G={S1,S 2; A}在混合策略意义下有解的充要条件是:存在
为函数以
的一个鞍点,即对一切
【答案】(l )先证明充分性 对任意X , Y 均有
,故得出
又所以,
另一方便,对任何X ,Y 有
②
由不等式①、②
,
(2)再证必要性。设有X*,Y*,使得
则由
,有
所以对任意X ,Y ,有
综上得证。
8. 称顾客为等待所费时间与服务时间之比为顾客损失率,用R 表示。
(l )试证:对于M/M/1模型,(2)在上题中,设
不变而
。
是可控制的,试定
使顾客损失率小于4。
证毕。
时,顾客损失率小于4。
① ,所以得
,有
,
使
【答案】(l )对于M/M/1模型, (2)由
,得
。由定义,有
,所以当