2017年华中科技大学管理学院885运筹学(一)[专业硕士]考研仿真模拟题
● 摘要
一、简答题
1. 简述目标规划单纯形法求解的基本思想。
【答案】第一步,建立初始单纯形表,在表中将检验数行按优先因子个数分别列成K 行,置k=l;
第二步,检查该行中是否存在负数,且对应的前k 一1行的系数是零。若有负数取其中最小者对应的变量为换入变量,转第三步。若无负数。则转第五步;
第三步,按最小比值规则确定换出变量,当存在两个和两个以上相同的最小比值时,选取具有较高优先级别 的变量为换出变量;
第四步,按单纯形法进行基变换运算,建立新的计算表,返回第二步;
第五步,当k=K时,计算结束。表中的解即为满意解。否则置k=k+l,返回到第二步。
2. 考虑一个(线性)目标规划在计算机上求解的问题。假设手头只有一个线性规划的求解软件,想要仅仅 借助该软件来实现对目标规划的求解,请问你的策略是什么(不超过200字)?
【答案】想要仅仅借助该软件来实现对目标规划的求解,则应按如下步骤进行。
先以第一级目标为目标函数,以原来的约束为约束,求解一个线性规划; 其次,将己经实现的第一个目标作 为一个附加约束,以第二级目标为目标函数,再求解一个线性规划。以此类推,逐
,即可求出目标规划的满意解。 次求解k 个线性规划(k 为优先级的个数)
3. 考虑两个企业的资源整合问题。如果每个单位单独组织生产,各自的效益和,往往小于把两个单位的生 产要素进行重组,然后再统筹生产带来的收益高。因此,资产重组,往往能够带来“双赢”的格局,企业自身也 希望通过合并,做大做强。问题是,每个企业可能会故意夸大其利润水平,从而希冀分得更多的合作收益。请谈谈你的设想,用以协调 其中可能出现的问题(不超过300字,可用符号表述你的想法)?
【答案】让两个企业单独汇报独立生产能获得的利润,分别记为z 1、z 2。如果z 1+z2≦2成之,
,按照z 1、z 2的比例进行分配。这样的分配方式,两个企业说真则将合作后的额外收益z-(z 1+z2)
话,是一个均衡策略。
4. 试简述求解整数规划模型的分枝定界法剪枝的几种情况。
【答案】(l )某枝已经达到其范围内的最优解;
(2)某枝域内没有可行解时,即是不可行域;
(3)某枝所得数据不优于当前最优解时。
二、证明题
5. 设G=(V ,E )是一个简单圈,令证明:(l )若
(2)若,则G 必有圈; ,则G 必有包含至少(称条边的圈。 为G 的最小次)。
(3)设G 是一个连通图,不含奇点。证明:从G 中丢失任一条边后,得到的图仍是连通图。
【答案】(l )因为G (V ,E )是一个简单圈,故该图中无环,也无重复边。若
假设G 中无圈,则G 可能是树或非连通图,这两种情况均存在悬挂点,即
相矛盾。故假设不成立, 所以,G 必有圈。
(2)若,设与对应的点为v k ,则v k 必与
,也至少与个端点相连。由(l )的结论知,个端点构成圈)
。G 中必有圈(由于对圈中的连通图而言,v k 至少与
这
的次至少为
个端点不构成圈,那么在端点处必向外延伸(因为最小次为
外某点相连)经连通链而到另一端点,对该圈而言,边数大于
少于占条边的圈。 ,个端点相连。如果v k 与v i 这, 不与其中某点相连,必与其条,故G 必定 是包含不(3)证明:因为G 连通且不含奇点,故d (v )=2n,且该图中无悬挂点。由题(l )的结论知,G 必有圈。又因为G 是连通的,所以从G 中去掉任一条边,都必在某一圈中。而从圈中去掉任一条边,所得图仍是连通图。
6. 对于M/M/1/∞/∞模型,在先到先服务情况下,试证明:
顾客排队等待时间分布的概率密度是
,并根据该式求等待时间的期望值
为在统计平衡 下顾客的等待时间,则
由a n 的定义,得,于是有 。 ,【答案】令N ’为在统计平衡下一个顾客到达时刻看到系统中已有的顾客数(不包括此顾客)
由定理知,对任何一个输入为最简单流的单服务台或多服务台的等待制排队系统,
恒有
,所以,
到达者遇到系统中顾客数不少于1个顾客,是需要等待的充要条件,因此
①
因为当系统中有n (n ≥l )个顾客时,其中只有一个顾客正在接受服务,而其余n-1个顾客在排队等待,所以,新到顾客必须在服务台轮空n 次后,才能接受服务。于是,服务台轮空次数m (t )
②
其次,因为服务时间服从负指数分布,故其输出流,即服务台轮空次数m (t )是一最简单流,其参数为因此
③
将③式代入②式,然后再将②式代入①式,得
,其中,
,有
所以,顾客在系统中的等待时间分布为
因为,以正概率取0值,而当t>0时,它又具有连续型随机变量的性质,其分布函
既不是连续型随机变量,又不是离散型随机变量。然而类似
的密度函数为
7. 证明:设,则为G 的解的充要条件是:存在数
。(本章定理4)
,使得和分别是不等式组(I )和(II )的解,且数必在(0,+∞) 上连续。所以于连续型随机变量,可以定义。