2017年上海工程技术大学航空运输学院821运筹学[专业硕士]考研冲刺密押题
● 摘要
一、选择题
1. 用线性规划制定某一企业的生产计划问题,两种资源的影子价格分别为y 甲=5,y 乙=8,说明这两种资源在该企业中的稀缺程度为:( )。
A. 甲比乙更稀缺
B. 甲和乙同样稀缺
C. 乙比甲更稀缺
D. 甲和乙都不稀缺
【答案】C
【解析】影子价格是对系统内部资源稀缺程度的一种客观评价,某种资源的影子价格越高,说明该资源在系统内越稀缺,增加该资源的供应量对系统目标函数值的贡献也越大。
2. 在求解整数规划问题时,不可能出现的是( )。
A. 唯一最优解
B. 无可行解
C. 多重最优解
D. 无穷多最优解
【答案】D
【解析】整数规划的可行解的个数是有限的,所以整数规划中不可能出现无穷多最优解。
3. 一般卖报童模型的假设条件,不包括以下( )。
A. 买入一件物品的成本是固定并已知的
B. 卖出一件物品的收入是固定并己知的
C. 若物品在一个周期中卖不出去,折价收入是固定并己知的
D. 物品的销售数量是己知的
【答案】D
【解析】报童问题为需求是随机离散的存储问题,所以其假设中不可能包括物品的销售数量是己知的。
4. 线性规划的最优解有以下几种可能( )。
A. 唯一最优解
B. 多个最优解
C. 没有最优解,因为目标函数无界
D. 没有最优解,因为没有可行解
【答案】ABCD
【解析】线性规划问题的每个基可行解对应可行域的一个顶点,若现行规划问题有最优解,必在某个顶点上 得到,当该顶点唯一时,有唯一最优解; 当目标函数在多个顶点上达到最大值时,则该问题有无限多个最优解; 目标函数无界,称线性规划问题具有无界解,此时无最优解; 使目标函数达到最大的可行解称为最优解,故没有可行解就没有最优解。
二、填空题
5. 无向连通图G 是欧拉图的充要条件是_____。
【答案】G 中无奇点
6. 两阶段法中,若第一阶段目标函数最优值不为0,则原问题_____。
【答案】无可行解
【解析】第一阶段目标函数值不是0,则说明最优解的基变量中含有非零的人工变量,表明原先性规划问题五可行解。
7. 图G=(V ,E )有生成树的充分必要条件是_____。
【答案】G 是连通图
【解析】图G 是连通图,如果G 不含圈,那么G 本身是一个树,从而G 使它自身的一个支撑树。现设G 含圈,任取一个圈,从圈中任意地去掉一条边,得到G 的一个支撑子图Gl 。如果Gl 不含圈,那么Gl 是G 的 一个支撑树,如果Gl 仍含圈,那么从Gl 中再任取一个圈,如此重复,最终可以得到G 的一个支撑子图Gk , 它不含圈,于是Gk 就是G 的一个支撑树。
8. 对于同一风险决策问题,与用期望收益最大准则得到相同结果的决策准则是:_____。
【答案】期望损失最小准则
【解析】对于同一风险决策问题,用期望收益最大准则和期望损失最小准则获得的决策方案相同。
三、证明题
9. 车间内有m 台机器,有c 个修理工(m>c),每台机器发生故障率为兄,符合M/M/c/m/m模型, 试证:
【答案】由题设知
并说明上式左右两端的概率意义。
一个周期T c 等于发生故障的机器在系统中的逗留时间W s 加上机连续正常工作时间
为 服务台繁忙的概率。服务台繁忙的概率也为,所以。 ,
则
10.己知九个人v 1,v 2,…,v 9中v 1和两个人握过手,v 2和v 3各和四个人握过手,v 4,v 5,v 6,v 7各和五个人握过手,v 8,v 9各和六个人握过手,证明这九个人一定可以找出三人互相握过手。
【答案】该问题可表述为一个包含9个点(每个人代表一个点)的图的问题。依题意知 d (v l )=2,d (v 2)=d(v 3)=4,d (v 4)=d(v 5)=d(v 6)=d(v 7)=5,d (v 8)=d(v 9)=6 其中,边v i ,v j 代表v i 和v j 握过手。对于v 9,因为d (v 9)=6,所以v 4,v 5,v 6,v 7中至少有两个点与v 9之间 存在连线,设该两点为v 4和v 5。假设与v 4和与v 9相连的其他五点之间无边,
则
,与已知的 d (v 4)=5相矛盾,故假设不成立。即v 4与上述五点间必存在至少
两条边,设其中一点为v k ,则v k ,v 4,v 9两两相连,即存在三人之间互相握过手。
11.证明:r (x )二x12+x22是严格凸函数。
【答案】首先求导为(2x l ,2x 2:) 求海塞矩阵
为正定矩阵,所以f (x )为严格凸函数
12.设线性规划问题
解。
【答案】其对偶问题为
设
,
即可得
,由此得,即是有最优解,B 为最优基,证明单纯形乘子CB 是对偶问题的最优1是原问题的最优解,则其对应的基矩阵B
必存在,这时Y 是对偶问题的可行解,它使由于原问题的最优解,使目标函数取值
对偶问题的最优解,因此单纯形乘子
,是对偶问题的最优解。
四、计算题