2017年上海海事大学经济管理学院809运筹学考研强化模拟题
● 摘要
一、选择题
1. 求解指派问题的匈牙利方法要求系数矩阵中每个元素都是( )。
A. 非负的
B. 大于零
C. 无约束
D. 非零常数
【答案】A
【解析】系数矩阵中的系数表示的是费用、成本、时间等。
2. 单纯形法中,关于松弛变量和人工变量,以下说法正确的是( )。
A. 在最后的解中,松弛变量必须为0,人工变量不必为0
B. 在最后的解中,松弛变量不必为0,人工变量必须为0
C. 在最后的解中,松弛变量和人工变量都必须为0
D. 在最后的解中,松弛变量和人工变量都不必为0
【答案】B
【解析】松弛变量是在约束不等式号的左端加入的,在最后的解中,其值可以不必为0; 人工变量是在原约束条件为等式的情况下加入的,只有基变量中不再含有非零的人工变量时,原问题才有解,所有最后的解中人工变量必须为0。
3. 根据对偶解的经济含义,若天然气资源是我国的一种稀缺能源资源,其影子价格必然是( )。
A. 不能确定
B.<0
C.=0
D.>0
【答案】D
【解析】影子价格是对系统内部资源稀缺程度的一种客观评价,某种资源的影子价格越高,说明该资源在系 统内越稀缺,增加该资源的供应量对系统目标函数值贡献也越大。天然气是资源是一种稀缺能源资源,其影子价 格必然大于0。
4. 线性规划可行域为封闭的有界区域,最优解可能是( )。
A. 唯一的最优解
B. 一个以上的最优解
C. 目标函数无界
D. 没有可行解
【答案】AB
【解析】可行域非空,故有可行解; 可行域封闭,故目标函数有界,有一个或多个最优解。
二、填空题
5. 如果运输问题单位运价表的某一行(或某一列)元素分别加上一个常数k ,最优调运方案是否会发生变化: _____。
【答案】不发生变化
【解析】如果运输问题单位运价表的某一行(或某一列)元素分别加上一个常数k ,最优调运方案中各变量的 检验数均不发生变化,所以最优调运方案不发生变化。
6. 运输问题任一基可行解非零分量的个数的条件是_____。
【答案】小于等于行数+列数-1
【解析】任意运输问题的基可行解可变量个数为:行数+列数一l 。然而基变量也可能等于0,所以运输问题 任一基可行解非零分量的个数小于等于行数+列数一1。
7. 两阶段法中,若第一阶段目标函数最优值不为0,则原问题_____。
【答案】无可行解
【解析】第一阶段目标函数值不是0,则说明最优解的基变量中含有非零的人工变量,表明原先性规划问题五可行解。
8. 某极小化线性规划问题的对偶问题的最优解的第1个分量为y l =-12,则该问题的第1个约束条件的右端常数项的对偶价格为:_____。
【答案】-12
【解析】由对偶问题的经济解释可知,原问题约束条件的右端常数项的对偶价格等于对偶问题的最优解中相 应的分量的值。
三、判断题
9. 若X 1, X 2分别是某一线性规划问题的最优解,则
其中λ1, λ2为正实数。( )
【答案】×
【解析】λ1, λ2不但应该是正实数,还应该满足λ1﹢λ2=1。
10.运输问题是一种特殊的线性规划模型,因而其求解结果也可能出现四种情况之一:有惟一最优解,有无穷多最优解,无界解,无可行解。( )
【答案】×
【解析】运输问题是一种特殊的线性规划模型,它总存在可行解,或是存在惟一最优解,或
也是该线性规划问题的最优解,
是有无穷最优解。
11.指派问题效率矩阵的每个元素乘以同一大于0的常数k ,将不影响最优指派方案。( )
【答案】√
【解析】效率矩阵每个元素乘以同一大于0的常数k ,即目标函数的系数同时增大k 倍,不会影响最优基的变化,故不影响最优指派方案。
12.结点最早时间同最迟时间相等的点连接的线路就是关键路线。( )
【答案】√
【解析】关键路线是指总时差为零的工作链,而该工作链是由一系列最早时间同最迟时间相等的点连接而成的。
13.运输问题按照最小元素法给出的初始基可行解,从每一空格出发可以找出且仅能找出惟一的闭合回路。( )
【答案】√
【解析】从每一空格出发一定存在和可以找到惟一的闭回路。因(m+n-l)个数字格(基变量)对应的系数向量是一个基。任一空格(非基变量)对应的系数向量是这个基的线性组合。而这些向量构成了闭回路。
四、证明题
14.己知九个人v 1,v 2,…,v 9中v 1和两个人握过手,v 2和v 3各和四个人握过手,v 4,v 5,v 6,v 7各和五个人握过手,v 8,v 9各和六个人握过手,证明这九个人一定可以找出三人互相握过手。
【答案】该问题可表述为一个包含9个点(每个人代表一个点)的图的问题。依题意知 d (v l )=2,d (v 2)=d(v 3)=4,d (v 4)=d(v 5)=d(v 6)=d(v 7)=5,d (v 8)=d(v 9)=6 其中,边v i ,v j 代表v i 和v j 握过手。对于v 9,因为d (v 9)=6,所以v 4,v 5,v 6,v 7中至少有两个点与v 9之间 存在连线,设该两点为v 4和v 5。假设与v 4和与v 9相连的其他五点之间无边,
则
,与已知的 d (v 4)=5相矛盾,故假设不成立。即v 4与上述五点间必存在至少
两条边,设其中一点为v k ,则v k ,v 4,v 9两两相连,即存在三人之间互相握过手。
15.设m*m对策的矩阵为
其中,当时,当i=j时,证明此对策的最优策略为
【答案】由题意知,