当前位置:问答库>考研试题

2017年南京信息工程大学数学与统计学院802高等代数考研冲刺密押题

  摘要

一、选择题

1. 设

A. 合同且相似 B. 合同但不相似 C. 不合同但相似 D. 不合同不相似 【答案】A

【解析】因为A ,B 都是实对称阵,且B 有4个特征值

又因为即A 也有4个特征值0,0,0,4. 因而存在正交阵

其中

故A 〜B.

再由

是正交阵,知T 也是正交阵,从而有

且由①式得

则A 与B ( ).

使

因此A 与B 合同.

2. 设A ,B 为同阶可逆矩阵,则( ).

A.AB=BA

B. 存在可逆阵P ,使C. 存在可逆阵C 使【答案】D 【解析】

D. 存在可逆阵P ,Q ,使PAQ=B

3.

设次型.

A. B. C. D. 【答案】D

【解析】方法1 用排除法令

为任意实数

不等于0

为非正实数

不等于-1

则当( )时,此时二次型为正定二

这时f (l ,1,1)=0,即f 不是正定的. 从而否定A ,B ,C. 方法2

所以当方法3 设

时,f 为正定二次型.

对应的矩阵为A ,则

A 的3个顺序主子式为

所以当方法4令

时,A 的3个顺序主子式都大于0,则,为正定二次型,故选(D ).

所以f 为正定的. 4. 设

则( )•

为空间的两组基,且

【答案】(C ) 【解析】令将①代入④得

由②有

即 5. 二次型

A. 正定 B. 不定 C. 负定 D. 半正定 【答案】B 【解析】方法1

方法2 设二次型矩阵A ,则

是( )二次型.

是不定二次型,故选B.

由于因此否定A ,C ,A 中有二阶主子式

从而否定D ,故选B.

二、分析计算题

6. 设A 为n 阶方阵. 证明:

【答案】证法I 齐次线性方程组任一解,

则必

因若

的解显然是

再用

乘上式,又得

如此下去,即得

线性无关,矛盾. 因此必

同解. 于是由上题知(3)成立.

的解反之,设的

这说明n+1个n 元(列)向量与

同解.

同理可证