当前位置:问答库>考研试题

2018年中国海洋大学信息科学与工程学院638量子力学考研核心题库

  摘要

一、简答题

1. 简述波函数的统计解释。

【答案】波函数在空间某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成正比。

2. 现有三种能级【答案】一维谐振子.

请分别指出他们对应的是哪些系统。

对应一维无限深势阱;

对应

对应中心库仑势系统,例如氢原子;

二、计算题

3. 假设一个定域电子(忽略电子轨道运动)在均匀磁场中运动,磁场S 沿轴正向,电子磁矩在均匀磁场

中的势能表示

这里

为电子的磁矩。自旋用泡利矩阵

(1)求定域电子在磁场中的哈密顿量,并列出电子满足的薛定谔方程:(2)假设(3)求

时,电子自旋指向x 轴正向,即时,电子自旋指向y 轴负向,即

时,自旋的平均值。

的几率是多少?

【答案】(1)忽略电子轨道运动,其中,所以哈密顿为:薛定谔方程为:(2)在

是玻尔磁子。

表象中求解,自旋波函数可表示为:

即:

其中,设

因此可得:

时,电子的自旋指向x 轴正向,对应波函数为

在时刻t ,自旋的平均值:

所以:

(3)假设t 时刻,

的几率为P ,则

的几率为

且有:

所以:

4. 设一维谐振子的初态为(1)求t 时刻的波函数(3)求演化成

所需的最短时间

任意时刻t 的波函数可表示为已知t = 0时刻的波函数是由

得,

(2)求t 时刻处于基态及第一激发态的概率.

即基态与第一激发态叠加,其中为实参数.

【答案】(1) 一维谐振子定态能量和波函数:

在n=0,1的本征态的相应能量分别为:则任意时刻t 的波函数可以表示为

(2)t 时刻处于基态的几率为(3)设

时刻粒子的波函数是

处于第一激发态的几率

可得

所以当n=l时有最小时间,即 5. 在并将矩阵

的共同表象中,算符4的矩阵为对角化.

其中本征函数:

解得

求的本征值和归一化的本征函数,

【答案】(1)设的本征方程为: