● 摘要
小波分析应用到信号处理和图象处理已是众所周知,其成功之处在于L2(R)空间的多分辨分析 (MRA) 的引入,正因为有 MRA 结构,我们可以给出实现小波分析的快速算法.经典的 MRA 小波是一种重要的正交小波,在应用中许多著名例子及小波都属于正交小波类.
超小波是指希尔伯特空间L2(R)(m)=L2(R)+···L2(R)中的小波,是基于小波分析基础上的信号分析方法.超小波的独特之处在于,它对解决信号的多重性问题有小波无法比拟的优势.可构造L2(R)(m)空间的紧支撑小波的正交基,理论上,这些基要比已知的小波基较好.在数据压缩方面,当有同样数据时,超小波可以同时压缩多个信号.类似地,研究空间L2(R)(m)中的 MRA 超小波有十分重要作用.在2000年, Han D. 及 Larson D.已证明了完全可以构造L2(R)(m)中的 MRA 超小波.于2005年, Bildea S., Dutkay D E. 及Galriel P. 给出了构造空间L2(R)(m)中的 MRA 超小波的一种方法,并且构造了紧支撑小波的正交基.
建立在对规范紧框架小波分析的基础之上,本文给出了关于 MRA 超小波的判定定理,即一个超小波是 MRA 超小波的充分和必要条件.给出并证明了一个超小波是 MRA 结构当且仅当每个特殊线性子空间的维数是0或者1.特别地,当Ei是有界规范紧框架小波集时,一个超小波是 MRA 结构当且仅当Eis=Uk >-12-kEi是平移同余到[-#,#)的一个子集.除此之外还给出一个例子.
本文共分四部分:第一章,概述了小波分析及超小波的产生、发展发展过程.第二章,主要讨论了超小波的基本性质.规范紧框架小波扩展为超小波是超小波的一个重要的方面.因此,我们有必要在此介绍可扩展的一些性质.第三章,着重研究了超小波的构造方法.如何根据所处理的信号特征构造或者选择最佳的超小波函数应该成为我们要研究的问题之一.第四章,是本文的核心内容,讨论了直和希尔伯特空间L2(R)(m)中的 MRA 超小波的判定条件.