2017年南昌大学物流管理(同等学力加试)复试实战预测五套卷
● 摘要
一、简答题
1. 说明本书所述货运车辆优化调度算法的原理和求解步骤,并绘出求解过程框图。请简要回答以下问题。
(1)若有两种车型的车可用,书中提出的模型应怎样修改? 在书中所提算法的启发下,试拟定出一套求解的迭代步骤。
(2)你认为应如何将书中提出的模型和算法推广到多目标的情形。
【答案】①货运车辆优化调度算法的原理:最小费用最大流原理。求解步骤为:a. 仅考虑重载点,运用表上作业法求出最优解作为原问题的可行解; b. 进行解的扩展和解的收缩,直至得到可接受的可行解; c. 以该可接受的可行解为依据确定初始行车线路; d. 根据具体约束条件进行调整,直至得到最优行车路线。求解过程框图如图所示。
图
(2)修改后的迭代算法即神经网络(neural networks)算法。
①建立结合矩阵:将车辆经过的点包括源点看成神经网络的结点,即神经元,令神经元数目为Ni 神经元 和j 神经元的结合权值为,j 神经元的输出为r j 。
②将车辆调度的各种约束条件转化为约束能量函数为E 约。
③神经网络计算:令时刻t 神经元i 的输出为r i (t ),且r i (t )只能取0或1,令神经元i 的阈值为Q i ,则输出能量
为
,其中,因此总的能量函数
为,则该网络相对处于稳定状态。由于如
果,且E 有界,系统必
趋向一个比较好的稳定状态,再把此稳定状态时r i (t ) 形成换位阵中元素为l 的结点连接起来,形成所求的最满意车辆调度线路。
④根据所形成的最满意线路来选择车辆调度方案。
(3)推广到多目标情形:车辆优化的目标函数可以有很多个,如总运费最小,司机总的驾驶时间最短,车 辆满载行驶的时间最长等; 而约束条件,如路径的最大输入输出流、车载量、发车和收车约束等。也可以加入惩 罚算子将约束条件转化为惩罚函数,利用多目标方法进行求解。
2. 简述目标规划单纯形法求解的基本思想。
【答案】第一步,建立初始单纯形表,在表中将检验数行按优先因子个数分别列成K 行,置k=l;
第二步,检查该行中是否存在负数,且对应的前k 一1行的系数是零。若有负数取其中最小者对应的变量为换入变量,转第三步。若无负数。则转第五步;
第三步,按最小比值规则确定换出变量,当存在两个和两个以上相同的最小比值时,选取具有较高优先级别 的变量为换出变量;
第四步,按单纯形法进行基变换运算,建立新的计算表,返回第二步;
第五步,当k=K时,计算结束。表中的解即为满意解。否则置k=k+l,返回到第二步。
二、计算题
3. 有四个工件J 1,J 2,J 3,J 4,要求在三台设备A ,B ,C 上顺次加工,各工件在各设备上的加工时间示于表中,试构造一启发式算法,用于寻求使总加工时间最短的工件加工顺序。
表
【答案】可设计如下启发式算法:
利用该启发式算法求解,求解过程如表所示。
表
所以,最优加工顺序为,总加工时间为40。
4. 某工厂利用原材料A 、B 生产产品甲、乙、丙,有关资料见表。
表
(1)怎样安排每天的生产计划,使利润最大(注:要求建立数学模型,写出求解过程)。 (2)若增加1kg 原材料A ,总利润增加多少。
(3)设原材料A 的市场价格为15元/g,若要转卖原材料A ,工厂应至少叫价多少,为什么。
(4)单位产品利润分别在什么范围内变化时,原生产计划不变。
(5)由于市场的变化,产品乙的单件利润变为55元,这时生产计划是否要调整,总利润是否变化,为什么。
(6)工厂计划生产新产品丁,每件产品丁消耗原材料A 、B 分别为2kg ,2kg ,每件产品丁应至少获利多少时才有利于投产。
【答案】设生产甲、乙、丙三种产品的数量分别为x 1,x 2,x 3,则此题的数学模型为: