2017年重庆交通大学经济与管理学院812运筹学考研题库
● 摘要
一、选择题
1. 设线性规划
A. 基本可行解
B. 基本可行最优解
C. 最优解
D. 基本解
【答案】A
【解析】可行解包括基可行解与非基可行解。
2. 用匈牙利法求解指派问题时,不可以进行的操作是( )。
A. 效益矩阵的每行同时乘以一个常数
B. 效益矩阵的每行同时加上一个常数
C. 效益矩阵的每行同时减去一个常数
D. 效益矩阵乘以一个常数
【答案】D
【解析】效益矩阵乘以一个常数相当于系数矩阵的某行或某列乘以一个常数,这相当于目标函数中的部分系 数乘以一个常数,而目标函数整体乘以一个系数,显然会影响求解结果。
3. 线性规划的最优解有以下几种可能( )。
A. 唯一最优解
B. 多个最优解
C. 没有最优解,因为目标函数无界
D. 没有最优解,因为没有可行解
【答案】ABCD
【解析】线性规划问题的每个基可行解对应可行域的一个顶点,若现行规划问题有最优解,必在某个顶点上 得到,当该顶点唯一时,有唯一最优解; 当目标函数在多个顶点上达到最大值时,则该问题有无限多个最优解; 目标函数无界,称线性规划问题具有无界解,此时无最优解; 使目标函数达到最大的可行解称为最优解,故没有可行解就没有最优解。
4. 运输问题中,m+n-l个变量构成基本可解的充要条件是它不含( )。
A. 松弛变量
第 2 页,共 74 页 有可行解,则此线性规划一定有( )。
B. 多余变量
C. 闭回路
D. 圈
【答案】C
【解析】位于闭回路上的一组变量,它们对应的运输问题约束条件的系数列向量线性相关,因而在运输问题基可行解的迭代过程中,不允许出现全部顶点由填有数字的格构成的闭回路。也就是说,在确定运输问题的基可行解时,除要求基变量的个数为(m+n-l)外,还要求运输表中填有数字的格不构成闭回路。
二、填空题
5. 运输问题任一基可行解非零分量的个数的条件是_____。
【答案】小于等于行数+列数-1
【解析】任意运输问题的基可行解可变量个数为:行数+列数一l 。然而基变量也可能等于0,所以运输问题 任一基可行解非零分量的个数小于等于行数+列数一1。
6. 网络中如果树的节点个数为z ,则边的个数为_____。
【答案】z-l
【解析】由树的性质可知,树的边数=数的节点数-1
7. 对于同一风险决策问题,与用期望收益最大准则得到相同结果的决策准则是:_____。
【答案】期望损失最小准则
【解析】对于同一风险决策问题,用期望收益最大准则和期望损失最小准则获得的决策方案相同。
8. Fibonacoi 法在[2,6]区间上取的初始点是_____。
【答案】,
【解析】由Fibonacci 的计算方法可知。
三、判断题
9. 已知y i *为线性规划问题的对偶问题的最优解,若y i *>0,则说明在最优生产计划中第i 种资源己经完全耗尽。( )
【答案】√
【解析】对偶问题互补松弛性质中
中第i 种资源已经完全耗尽。
第 3 页,共 74 页 ,表明在最优生产计划
10.己知yi 为线性规划的对偶问题的最优解,若yi=0,说明在最优生产计划中第i 种资源一定还有剩余。( )
【答案】×
【解析】在生产过程中,如果某种资源乓未得到充分利用时,该种资源的影子价格为零。但是影子价格为零 并不单表该种资源一定有剩余。
11.如果图T 是树,则T 中一定存在两个顶点,它们之间存在两条不同的链。( )
【答案】×
【解析】连通且不含圈的无向图称为树。因此任意两点间必定只有一条链。
12.目标规划问题的日标函数都是求最大化问题的。( )
【答案】×
【解析】当每一目标值确定后,决策者的要求是尽可能缩小偏离目标值,因此目标规划的目标函数只能是最小化的。
13.如果线性规划问题有最优解,则它一定是基可行解。( )
【答案】√
【解析】基解且可行才有可能是最优解。
四、证明题
14.设线性规划问题1是
()是其对偶问题的最优解。
又设线性规划问题2是
其中k i 是给定的常数,求证
【答案】问题1的矩阵表示为
第 4 页,共 74 页