2018年浙江师范大学教师教育学院312心理学专业基础综合之现代心理与教育统计学考研核心题库
● 摘要
一、概念题
1. 检验的显著性水平
【答案】检验的显著性水平指在假设检验中,虚无假设正确时而拒绝虚无假设所犯错误的概率。在假设检验中有可能会犯错误,如果虚无假设正确却把它当成错误的加以拒绝,犯这类错误的概率用a 表示,a 就是假设检验中的显著性水平。通常选择α=0.05作为检验的显著性水平。也就是说每当实验结果发生的概率小于或等于0.05的时候,就拒绝虚无假设。
2. 随机变量
【答案】随机变量(random variable)是在样本空间的全部事件集上的一个实值函数。通常随机变量用大写字母x ,y , z 等表示,或者希腊字母,…等表示。分离散型随机变量和连续型随机变量两类。离散型随机变量是指所有可能的取值个数是有限的或至多可列的随机变量。如随机抽取任一学生观察其性别,其样本空间只有两个男性和女性样本点,
即
随机变量X 只取两个值:即当某学生
是男生时,x 取1; 当学生是女生时,x 取0。连续型随机变量是指可能在一个连续区间内或整个实数范围内取值的随机变量。如,在12岁的学生总体中,随机抽一个观测其身高y 。此随机试验的样本空间
机现象。
3. 概率
【答案】概率(probability ),概率论术语指,随机事件发生可能性大小度量指标。①概率描述性定义。随机事件A 在所有试验中发生可能性大小的量值,称为事件A 的概率,记为P (A )。如将一枚均匀硬币上抛足够多次,会发现“正面朝上”的事件出现的频率在0.5上下波动。这种频率稳定性从实践上表明随机事件的概率是客观存在的。②概率的精确定义。设P 是定义在“事件域”上的一个集合函数,若满足下列条件,则称之为概率:
a.P
两互不相容对一
切,则是大于0的实数集。随机变量y 可在一个连续区间内取值。随机变量的引进使概率论能使用精密的数学工具(如微积分、代数、实变函数、测度论等)来处理和分析随
(性质(ⅲ)称为完全可加性)。若P 是概率,则不可能事件的概率为零,即对任意事件有应当注意,若P (A )=0, 并不能说A —定是不可能事件,即不可能事件的概率一定是零,但概率为零的事件未必是不可能事件。这是由
于P 是集合函数,可能在某些点集上(如有限个点)为零。同理,概率为1的事件,未必是必然事件。
4. 抽样误差
【答案】抽样误差指由抽样而造成的样本参数与总体参数之间差异或各样本参数之间差异。比如:样本平均数与总体平均数之间差异或各样本平均数之间差异。在抽样研究中,抽样误差是不可避免的,但可以估计其大小。
二、简答题
5. 某厂要进行压力的性别差异的研究,但由于工厂不大就把男女员工的数据都收集来了,那么应该用什么方法看性别间有否差异呢?
【答案】可以用独立样本t 检验进行性别间差异检验。
首先可以从样本的抽样方面考虑这个工厂在数据采集上的科学性。
抽样调查也会遇到调查的误差和偏误问题。通常抽样调查的误差有两种:一种是工作误差(也称登记误差或调查误差),一种是代表性误差(也称抽样误差)。另外,由于调查单位少,代表性强,所需调查人员少,工作误差比全面调查要小。特别是在总体包括的调查单位较多的情况下,抽样调查结果的准确性一般高于全面调查。因此,抽样调查的结果是非常可靠的。但是抽样调查得遵循一定的原则:
(1)调查样本是按随机的原则抽取的,在总体中每一个单位被抽取的机会是均等的,因此,能够保证被抽中的单位在总体中的均匀分布,不致出现倾向性误差,代表性强。
(2)所抽选的调查样本数量,是根据调查误差的要求,经过科学的计算确定的,在调查样本的数量上有可靠的保证。而且抽样过程中样本要能代表总体,不能随便挑选。
因此,这个工厂在进行性别差异的研究中,没有考虑抽样的科学性原则。这样得出的结果只能代表这个工厂的情况,而缺乏推论价值。
6. 中数,众数,几何平均数,调和平均数各适用于心理与教育研究中的哪些资料?
【答案】中数的适用条件:①当一组观测结果中出现两个极端数目时;②当次数分布的两端数据或个别数据不清楚时,只能取中数作为集中趋势的代表值;③当需要快速估计一组数据的代表值时,也常用中数。
众数的适用条件:①当需要快速而粗略地寻求一组数现代心理与教育统计学据的代表值时;②当一组数据出现不同质的情况时,可用众数表示典型情况,如工资收入、学生成绩等常以次数最多者为代表值;③当次数分布中有两极端的数目时,除了一般用中数外,有时也用众数;④当粗略估计次数分布的形态时,有时用平均数与众数之差,作为表示次数分布是否偏态的指标;⑤当一组数据中同时有两个数值的次数都比较多时,即次数分布中出现双众数时,也多用众数来表示数据分布形态。
几何平均数的适用资料:当要计算教育经费增加率、学习方面的进步率和学生或人口増加
率的估计时,可使用几何平均数。
调和平均数的适用资料:在心理与教育研究方面的应用,主要是用来描述学习速度方面的问题。调和平均数作为一种集中量数,在描述速度方面的集中趋势时,优于其他集中量数。在有关研究学习速度的实验设计中,反应指标一般常取两种形式:一是工作量固定,记录各被试完成相同工作所用的时间。二是学习时间一定,记录一定时间内各被试完成的工作量。由于反应指标不同,在计算学习速度时也不一样,这是应用调和平均数要特别注意的地方。
7. 为什么要建立回归方程?
【答案】(1)回归方程是通过回归分析以数学方式表示变量间的关系。如果通过相关分析显示出变量间的关系非常密切,则通过所求得的回归方程可获得相当准确的推算值。
(2)在心理学的实际研究中,回归分析是探讨变量间数量关系的一种常用的统计方法。它通过建立变量之间的数学模型对变量进行预测和控制。通过回归分析建立回归方程,表达数量之间的规律。例如,一元线性回归方程:
位时,将变化变化b 个单位。 它表示x 与y 的线性关系。式中称作估计值,为常数,表示该直线在Y 轴上的截距,常数b 表示该直线的斜率,即当JC 变化一个单
(3)根据自变量是一个还是多个,回归分析可划分为一元回归分析和多元回归分析。一元回归分析只能处理一个因变量和一个自变量的关系,并根据回归方程由自变量推测因变量。多元回归可决定一个因变量和多个自变量之间的关系,通过建立多元回归方程式,对未知的因变量做出预测。
8. 简述条图、直方图、圆形图(饼图)、线图以及散点图的用途。
【答案】这几种图是统计学中最常用的图形,条图和直方图都用于表示变量各取值结果的次数或相对次数,即次数分布图。不同的是前者用于离散或分类变量,后者用于连续变量(分组后)。圆形图用于表示离散变量的相对次数,即频率,整个圆面积为1,各扇形块表示各类别的频率。线图用于表示连续变量在某个分类变量各水平上的均值,如各年级的考试成绩均分,常用于组间比较中。散点图用于两连续变量的相关分析,可将两变量成对数据的值作为横、纵坐标标于图上,根据散点的形状可以大致判断两变量是否存在相关以及相关的程度。
三、计算题
9. 为了了解某校三年级480名学生的学习成绩,首先将他们的成绩分为上、中、下三层,各层人数分别为120、300、60, 各层的标准差估计为10、12、13, 假如要求从全年级中抽取60人,请用最优配置法计算各层应抽取的人数。
【答案】如果各层内的标准差已知,就应该考虑到标准差大的层要多分配,标准差小的层要少分配。这样才叫做最佳分配。
根据统计学公式: