当前位置:问答库>考研试题

2018年中国政法大学社会学院766心理学综合之现代心理与教育统计学考研核心题库

  摘要

一、概念题

1. 次数

【答案】次数是指某一事件在某一类别中出现的数目,又称为频数(frequency ), 用f 表示。

2. 随机原则

【答案】随机原则指在进行抽样时,总体中每一个个体是否被抽取,并不由研究者主观决定,而是每一个体按照概率原理被抽取的可能性是相等的。由于随机抽样使每个个体有同等机会被抽取,因而有相当大的可能性使样本保持和总体有相同的结构,或者说,具有最大的可能使总体的某些特征在样本中得以表现。这时可以说随机样本可以保证样本代表总体。

3. 嵌套设计

【答案】嵌套设计又称阶层设计,是指下一层不同因素水平,只在其上一层因素某一水平下出现,而在另一水平下不出现的设计。例如,B 因素的一些水平只在A 因素的

B 因素的另一些水平,只在水平下出现,而水平下出现。出现在次一级层次因素上各水平数不同的原因是由实际研宄的问题决定的,根据因素分层的多少有不同的嵌套类型。如一级嵌套、二级嵌套、三级嵌套等。一般情况下,可有完全随机取样和重复测量等不同形式。

4. 检验的显著性水平

【答案】检验的显著性水平指在假设检验中,虚无假设正确时而拒绝虚无假设所犯错误的概率。在假设检验中有可能会犯错误,如果虚无假设正确却把它当成错误的加以拒绝,犯这类错误的概率用a 表示,a 就是假设检验中的显著性水平。通常选择α=0.05作为检验的显著性水平。也就是说每当实验结果发生的概率小于或等于0.05的时候,就拒绝虚无假设。

二、简答题

5. 完全随机设计的方差分析与随机区组方差分析最重要的区别是什么?

【答案】完全随机设计的方差分析与随机区组的方差分析最重要的区别在于组内方差。随机区组方差分析中,将组内方差分解为组内误差和区组方差。

6. 在心理学研究中,以样本对总体判断的数理理论依据。

【答案】(1)在心理学研究中,以样本对总体判断必须以一定的统计理论为基础。推论统计的理论和原理包括抽样理论、估计理论和统计检验原理。

①抽样理论及其方法主要讨论在什么情况下可以从样本的特性推论出总体的特性。其中一个最重要的条件就是样本抽取的原则,只有抽样具有随机性,才能保证推论具有某种程度的准确性。

②估计理论主要是根据随机抽样的结果来估计总体分布的参数值,分为点估计和区间估计。

③统计检验主要是根据实际的抽样结果来推论有关总体特征的假设是否与具体的随机抽样所提供的信息相一致。

(2)当总体参数不清楚时,用一个特定值,一般就是样本统计量对总体参数进行估计。以样本对总体判断的数理理论依据是样本分布理论,即概率发生的机会。统计分析中一般认为,0.05或0.01属于小概率事件,小概率事件在一次抽样中是不可能出现的。

样本分布的规律:

①样本统计量为正态分布或接近正态分布的两种情况,凡符合这两种情况的分布,都可以根据正态分布的概率进行统计推论。

②总体分布非正态,但方差己知,这时当样本足够大时其样本平均数的分布 为渐进正态分布,接近正态分布的程度与样本n 及总体偏斜程度有关。

③依据随机取样原则,自正态分布的总体中抽取容量为n 的样本,当n 足够大时

样本方差及标准差的分布,渐趋正态分布。

(3)假设检验是通过样本统计量得出的差异做出一般性结论,判断总体参数之间是否存在差异。假设检验的原理是概率性质的反证法。为了检验虚无假设,首先假定虚无假设为真。在虚无假设为真的前提下,如果导致违反逻辑或违背人们常识和经验的不合理现象出现,则表明“虚无假设为真”的假定是不正确的,也就不能接受虚无假设。若没有导致不合理现象出现,那就认为“虚无假设为真”的假定是正确的,也就是说要接受虚无假设。假设检验中的“不合理现象”是指小概率事件在一次试验中发生了。小概率事件原理认为“小概率事件在一次试验中几乎是不可能发生的”。

7. 为什么要建立回归方程?

【答案】(1)回归方程是通过回归分析以数学方式表示变量间的关系。如果通过相关分析显示出变量间的关系非常密切,则通过所求得的回归方程可获得相当准确的推算值。

(2)在心理学的实际研究中,回归分析是探讨变量间数量关系的一种常用的统计方法。它通过建立变量之间的数学模型对变量进行预测和控制。通过回归分析建立回归方程,表达数量之间的规律。例如,一元线性回归方程:

位时,将变化变化b 个单位。 它表示x 与y 的线性关系。式中称作估计值,为常数,表示该直线在Y 轴上的截距,常数b 表示该直线的斜率,即当JC 变化一个单

(3)根据自变量是一个还是多个,回归分析可划分为一元回归分析和多元回归分析。一元回归分析只能处理一个因变量和一个自变量的关系,并根据回归方程由自变量推测因变量。多元回归可决定一个因变量和多个自变量之间的关系,通过建立多元回归方程式,对未知的因变

量做出预测。

8. 何谓次数、频率及概率?

【答案】(1)次数是指某一事件在某一类别中出现的数目,又称为频数(frequency ),用f 表示。

(2)频率,又称相对次数,即某一事件发生的次数被总的事件数目除,亦即某一数据出现的次数被这一组数据总个数去除。频率通常用比例(proportion )或百分数(percent )表示。

(3)概率又称机率、或然率(probability ),用符号P 表示,指某一事件在无限的观测中所能预料的相对出现的次数,也就是某一事物或某种情况在某一总体中出现的比率。概率通常用比例表示。

三、计算题

9. 有24对被试按匹配组设计,分别进行集中识字和分散识字教学。假设除了教学方式的不同之外,其他条件两组均相同,结果考试检查时,“集中”组

分,分,分;“分散”组)? 分,试问两种识字教学效果有否显著差异(己知两组结果之间相关系数

【答案】假设实验数据服从正态分布。被试按照匹配组设计,因此为相关样本,且相关系数已知。问题为是否有显著差异则用双侧检验。

(1)提出假设即两种识字教学效果没有显著差异

即两种识字教学效果有显著差异

(2)选择检验的统计量并计算其值

(3)确定显著性水平及临界值

当α=0.05时,

(4)作出统计决断 因为(5)报告结果

根据假设检验的结果,两种识字教学效果没有显著差异,

验)。

所以,两种识字教学效果没有显著差异。

(双侧检所以接受即两种识字教学效果没有显著差异。