2017年河南科技大学数学与统计学院840统计学考研强化模拟题
● 摘要
一、简答题
1. 回归分析结果的评价。
【答案】对回归分析结果的评价可以从以下四个方面入手:
(1)所估计的回归系数的符号是否与理论或事先预期相一致;
(2)如果理论上认为
归方程也应该如此;
(3)用判定系数来回答回归模型在多大程度上解释了因变量取值的差异;
(4)考察关于误差项的正态性假定是否成立。因为在对线性关系进行检验和对回归系数进行?检验时,都要求误差项服从正态分布,否则,所用的检验程序将是无效的。检验正态性的简单方法是画出残差的直方图或正态概率图。
2. 在单个总体均值的假设检验中,检验统计量要根据总体是否服从正态分布、总体方差是否己知,以及样本量的大小来确定。说明在不同情况下分别需要使用何种检验统计量。
【答案】在对单个总体均值进行假设检验时,采用何种检验统计量取决于所抽取的样本是大样本情况。
(1)在大样本情况下,样本均值的抽样分布近似服从正态分布。设总体均值为
为当总体方差已知时,总体均值的检验统计量为:
当总体方差
为:
(2)在小样本情况下,假设总体服从正态分布: ①当总体方差 已知时,样本均值的抽样分布近似服从正态分布。总体均值检验的统计量为:
②当总体方差未知时,需要用样本方差代替总体方差样本均值的抽样分布服从自由未知时,可以用样本方差来近似代替总体方差,此时总体均值检验的统计量总体方差
!还是小样本此外还需要区分总体是否服从正态分布、总体方差是否已知等几种之间的关系不仅是正的,而且是统计上显著的,那么所建立的回度为(n -l )的t 分布。因此需要采用t 分布来检验总体均值。检验的统计量为:
3. 解释总平方和、回归平方和、残差平方和的含义,并说明它们之间的关系。
【答案】(1)总平方和(S^T)是实际观测值与其均值的离差平方和,即
(2)回归平方和(^狀)是各回归值
来解释的变差部分。
(3)残差平方和(SSE )是各实际观测值与回归值的离差平方和,即
称为误差平方和。
(4)三者之间的关系
4. 在研究总体特征时,往往采用抽样调查,试给出采用抽样的理由。
【答案】
抽样调查()是一种非全面调查,它是按照随机原则从总体中抽取一部分单位作为样本进行观察研宄,以抽样样本的指标去推算总体指标的一种调查。随机原则要求所有调查单位都有一定的概率被抽取。根据抽选样本的方法,抽样调查可以分为概率抽样和非概率抽样两类。概率抽样是按照概率论和数理统计的原理从调查研宄的总体中,根据随机原则来抽选样本,并从数量上对总体的某些特征作出估计推断,对推断出可能出现的误差可以从概率意义上加以控制。习惯上将概率抽样称为抽样调查。抽样调查同其他调查比较,具有 如下几个特点:第一,样本单位按随机原则抽取,排除了主观因素对选取样本单位的影响;第二,能够根据部分 调查的实际资料对调查对象的总体的数量特征进行推断,从而达到对调查总体的认识;第三,在抽样调查中会存 在抽样误差,但是这个误差可以事先计算并加以控制。因此,抽样调查既能节省人力、物力、财力,又可以提高资料的时效性,而且能取得比较正确的全面统计资料,具有许多优点。
5. 如果有百分之五的人是左撇子,而小明和他弟弟都是左撇子;那么小明和他弟弟都是左撇子这个事件的 概率是不是0. 05X0. 05=0. 00257?为什么?
【答案】不是。
显然,小明和他弟弟都是左撇子的事件不是独立的,所以这种计算方法错误。
当两个事件相互独立时,
当两个事件不相互独立时,⑴ ⑵ 它是除了的线性影响之外的其他因素对变差的作用,是不能由回归直线来解释的变差部分。其又与实际观测值的均值y 的离差平方和,即其反映了在y 的总变差中由于x 与y 之间的线性关系引起的y 的变化部分,它是可以由回归直线记事件A 为小明是左撇子,事件B 为小明的弟弟是左撇子。显然小明是左撇子和他弟弟是左
撇子这两个事件不相互独立,所以选择第二个公式计算小明和他弟弟都是左撇子这个事件的概率。
6. 说明回归模型的假设以及当这些假设不成立时的应对方法。
【答案】(1)多元回归模型的基本假定有:
①自变量
③对于自变
量
; 是非随机的、固定的,且相互之间互不相关(无多重共线性) 的方
差都相同,且不序列相关,
即
的所有
值②误差项s 是一个期望值为0的随机变量,即
④误差项是一个服从正态分布的随机变量,且相互独立,即
(2)若模型中存在多重共线性时,解决的方法有:
第一,将一个或多个相关的自变量从模型中剔除,使保留的自变量尽可能不相关。
第二,如果要在模型中保留所有的自变量,那就应该:避免根据统计量对单个参数进行检验;对因变量Y 值的推断(估计或预测)限定在自变量样本值的范围内。
若模型中存在序列相关时,解决的方法有:如果误差项不是相互独立的,则说明回归模型存在序列相关性
,这时首先要查明序列相关产生的原因。如果是回归模型选用不当,则应改用适当的回归模型;如果是缺少重要的自变量,则应増加自变量;如果以上两种方法都不能消除序列相关性,则需采用迭代法、差分法等方法处理。
若模型中存在异方差性时,解决的方法有:当存在异方差性时,普通最小二乘估计不再具有最小方差线性估计的性质,而加权最小二乘估计则可以改进估计的性质。加权最小二乘估计对误差项方差小的项加一个大的权数,对误差项方差大的项加一个小的权数,因此加强了小方差性的地位,使离差平方和中各项的作用相同。
7. 概述相关分析与回归分析的联系与区别。
【答案】(1)相关分析和回归分析的联系
它们具有共同的研宄对象,都是对变量间相关关系的分析,二者可以相互补充。相关分析可以表明变量间相关关系的性质和程度,只有当变量间存在相当程度的相关关系时,进行回归分析去寻求变量间相关的具体数学形式才有实际的意义。同时,在进行相关分析时,如果要具体确定变量间相关的具体数学形式,又要依赖于回归分析,而且在多个变量的相关分析中相关系数的确定也是建立在回归分析基础上的。
(2)相关分析和回归分析的区别
①从研究目的上看,相关分析是用一定的数量指标(相关系数)度量变量间相互联系的方向和程度;回归分析却是要寻求变量间联系的具体数学形式,是要根据自变量的固定值去估计和预测因变量的平均值。
②从对变量的处理看,相关分析对称地对待相互联系的变量,不考虑二者的因果关系,也就是不区分自变量和因变量,相关的变量不一定具有因果关系,均视为随机变量;回归分析是在变量因果关系分析的基础上研宄其中的自变量的变动对因变量的具体影响,必须明确划分自变量和因变量,所以回归分析中对变量的处理是不对称的,在回归分析中通常假定自变量在重复抽样中是取固定值的非随机变量,只有因变量是具有一定概率分布的随机变量。
相关内容
相关标签