当前位置:问答库>考研试题

2017年大连大学教育部先进设计与智能计算重点实验室820高等代数考研强化模拟题

  摘要

一、选择题

1. 设A 为4×3矩阵,常数,则

是非齐次线性方程组

的3个线性无关的解,

为任意

的通解为( )

【答案】C 【解析】由

于又显然有基础解系.

考虑到

的一个特解,所以选C.

2. 齐次线性方程组

的系数矩阵为A ,若存在3阶矩阵

【答案】C 【解析】若当C.

时,

由AB=0, 用

右乘两边,可得A=0, 这与A 卢)矛盾,从而否定B. ,D.

由AB=0,左乘

可得

矛盾,从而否定A ,故选

使AB=0, 则( )

.

(否则与

是非齐次线性方程

组,所以有解矛盾)

的三个线性无关的解,所

以从而

的一个

是对应齐次线性方程组

的两个线性无关的解.

3. 设A 为3阶矩阵,将A 的第2行加到第1行得8, 再将B 的第1列的一1倍加到第2列得C ,

A. B. C. D.

【答案】B

则( ).

【解析】由已知,有

于是

4. 在n 维向量空间取出两个向量组,它们的秩( ).

A. 必相等

B. 可能相等亦可能不相等 C. 不相等 【答案】B 【解析】比如在

若选故选B.

5. 设行列式

从而否定A ,

若选

中选三个向量组

从而否定C ,

为f (X ),则方程,f (x )=0的根的个数为( ) A.1 B.2 C.3 D.4

【答案】B

【解析】因为将原行列式的第1列乘(-1)分别加到其他3列得

二、分析计算题

6. A ,B 分别是

【答案】由

又由

得证.

7. 计算n+1阶行列式

矩阵. 证明

【答案】将最后一列拆成两个行列式的和,