当前位置:问答库>考研试题

2017年西南财经大学运筹学考研复试核心题库

  摘要

一、简答题

1. 试写出求解最短径路的Dijkstra 算法的步骤。

【答案】Dijkstra 算法的步骤为:

(l )给v s 以p 标号,P (v S )二0,其余各点均给T 标号,T (v i )=+∞。

(2)若v i 点为刚得到P 标号的点,考虑这样的点v i ,(v i ,vj )属于E ,且v i 为T 标号。对v j 的T 标号进行如下修改:T (v j )=min[T(v i ),p (v i )+lij ]

(3)比较所有具有T 标号的点,把最小者改为P 标号,即: 当存在两个以上最小者时,可同时改为P 标号。若全部点均为P 标号时停止,否则用代V i 转回(2)。

2. 说明本书所述货运车辆优化调度算法的原理和求解步骤,并绘出求解过程框图。请简要回答以下问题。

(1)若有两种车型的车可用,书中提出的模型应怎样修改? 在书中所提算法的启发下,试拟定出一套求解的迭代步骤。

(2)你认为应如何将书中提出的模型和算法推广到多目标的情形。

【答案】①货运车辆优化调度算法的原理:最小费用最大流原理。求解步骤为:a. 仅考虑重载点,运用表上作业法求出最优解作为原问题的可行解; b. 进行解的扩展和解的收缩,直至得到可接受的可行解; c. 以该可接受的可行解为依据确定初始行车线路; d. 根据具体约束条件进行调整,直至得到最优行车路线。求解过程框图如图所示。

(2)修改后的迭代算法即神经网络(neural networks)算法。

①建立结合矩阵:将车辆经过的点包括源点看成神经网络的结点,即神经元,令神经元数目为Ni 神经元 和j 神经元的结合权值为,j 神经元的输出为r j 。

②将车辆调度的各种约束条件转化为约束能量函数为E 约。

③神经网络计算:令时刻t 神经元i 的输出为r i (t ),且r i (t )只能取0或1,令神经元i 的阈值为Q i ,则输出能量

,其中,因此总的能量函数

为,则该网络相对处于稳定状态。由于如

果,且E 有界,系统必

趋向一个比较好的稳定状态,再把此稳定状态时r i (t ) 形成换位阵中元素为l 的结点连接起来,形成所求的最满意车辆调度线路。

④根据所形成的最满意线路来选择车辆调度方案。

(3)推广到多目标情形:车辆优化的目标函数可以有很多个,如总运费最小,司机总的驾驶时间最短,车 辆满载行驶的时间最长等; 而约束条件,如路径的最大输入输出流、车载量、发车和收车约束等。也可以加入惩 罚算子将约束条件转化为惩罚函数,利用多目标方法进行求解。

二、计算题

3. 用两阶段法求解以下线性规划问题

【答案】第一阶段:加入松弛变量x 4,x 5,人工变量x 6,数学模型为:

用单纯形法求解如表所示。

第一阶段的最优解为X=

第二阶段:除去人工变量x 6,目标函数为:

求解结果为