当前位置:问答库>考研试题

2018年厦门大学财政系396经济类联考综合能力[专业硕士]之工程数学—线性代数考研强化五套模拟题

  摘要

一、解答题

1. 证明n

阶矩阵

与相似.

【答案】

设 分别求两个矩阵的特征值和特征向量为,

故A 的n 个特征值为

且A 是实对称矩阵,则其一定可以对角化,且

所以B 的n

个特征值也为

=-B的秩显然为1,故矩阵B 对应n-1

重特征值

对于n-1

重特征值由于矩阵(0E-B )

的特征向量应该有n-1个线性无关,进一步

矩阵B 存在n 个线性无关的特征向量,即矩阵B 一定可以对角化,且从而可

知n

阶矩阵

与相似.

2.

已知矩阵可逆矩阵P ,使

若不相似则说明理由。

试判断矩阵A 和B 是否相似,若相似则求出

【答案】由矩阵A 的特征多项式

得到矩阵A

的特征值是当

时,由秩

有2个线性无关的解,即

时矩阵A 有2个线性无关的特征向量,矩阵

A 可以相似对角化,因此矩阵A 和B 不相似。

3. 已知A

是矩阵,齐次方程组

的基础解系是次方程组Bx=0

的基础解系是

(Ⅰ)求矩阵A ;

(Ⅱ

)如果齐次线性方程组

【答案】(1

)记

A

的行向量)是齐次线性方程组

的解.

得到

所以矩阵

的基础解系为

则既可由

作初等行变换,有

不全为

当a=0时,

解出

又知齐

与有非零公共解,求a 的值并求公共解.

贝腕阵

的列向量(即矩阵

作初等行变换,有

(Ⅱ)设齐次线性方程组Ajc=0与Sx=0

的非零公共解为由

线性表出,

故可设

于是

线性表出,也可

因此,Ax=0与Bx=0

的公共解为

4. 设二次

(Ⅰ)用正交变换化二次型(Ⅱ

)求【答案】

(Ⅰ)由

其中t 为任意常数.

矩阵A 满足AB=0, 其

为标准形,并写出所用正交变换;

知,矩阵B 的列向量是齐次方程组Ax=0的解向量.

值(至少是二重)

根据

值是0, 0, 6.

正交化,

令的特征向量为

则是

的线性无关的特征向量.

由此可知

,是矩阵A 的特征

故知矩阵A

有特征值因此,矩阵A 的特征

那么由实对称矩阵不同特征值的特征向量相互正交,

解出

再对,单位化,得

那么经坐标变换

二次型化为标准形(Ⅱ)因为

所以由

进而