2017年华中师范量子力学复试仿真模拟三套题
● 摘要
一、计算题
1. 设氢原子处于状态
求氢原子能量、角动量平方及角动量z 分量的可能值,这些可能值出现的几率和这些力学量的平均值.
【答案】氢原子的定态能量为由氢原子所处的态函数
所以氢原子能量的取值为角动量平方的取值为角动量z 分量的取值为:
几率1/4,
几率3/4,
其平均值
之间的测不准关系。
和
依次表示
这个关系
几率为1,能量的平均值为
几率为1,其平均值为
2. 简述测不准关系的主要内容,并写出坐标和动量【答案】
设
和
的对易关系
是一个算符或普通的数。以
则有
和在态中的平均值,令
式称为测不准关系。 坐标和动量
之间的测不准关系为:
3. 设为氢原子束缚态能量本征函数(已归一),考虑自旋后,
某态表示为
在该态下计算(结果应尽量化简):
(1)在薄球壳(2)在薄球壳(3)
内找到粒子的几率。 内找到粒子且自旋沿
的几率。
为总角动量,计算在该态下的平均值。
在薄球壳
内找到粒子的概率
【答案】(1)由题意可得
:为:
(2)在薄球壳内找到粒子且自旋沿+x的几率可表示 为:
故:
已知在本征态表象下因此有:
(3)在
下的平均值为:
4. 粒子的一维运动满足薛定愕方程:(1)若
是薛定谔方程的两个解,证明
与时间无关.
(2)若势能V 不显含时间t ,用分离变数法导出不含时的薛定谔方程,并写出含时薛定谔方程的通解形式. 【答案】⑴
取式(1)之复共轭,得
得
对全空间积分: 即
所以与时间无关. (2)设
代入薛定谔方程,分离变量后,得E 为既不依赖t , 也不依赖r 的常数. 这样,所以
因此,通解可以表示为其中,
5. 在表象中,电子波函数可表示为【答案】式中,波函数
,
代表
(自旋向上)的状态波函数,
代表
是满足不含时的薛定谔方程
简要说明其物理意义。 (自旋向下)的状态
代表自旋向上的概率
,
代表自旋向下的概率,归一化表示为
:
6. 己知氢原子的径向波函数(1)求归一化常数A. (2)己知连带勒让德函数(3)对于本征态【答案】⑴(2) 所以
本征函数可以表示为
求氢原子的归一化本征函数
其对应的能量、角动量、角动量z 分量各是多少?
其中a 为波尔半径.
相关内容
相关标签