2017年山东大学经济研究院432统计学[专业学位]之概率论与数理统计考研强化模拟题
● 摘要
一、证明题
1. 设g (x )为随机变量X 取值的集合上的非负不减函数,且E (g (X ))存在,证明:对任意的
有
【答案】仅对连续随机变量X 加以证明. 记p (x )为X 的密度函数,则
2. 同时掷5枚骰子,试证明:
(1)P (每枚都不一样)=0.0926; (2)P (一对)=0.4630; (3)P (两对)=0.2315; (4)P (三枚一样)=0_1543; (5)P (四枚一样)=0.0193; (6)P (五枚一样)=0.0008. 【答案】同时掷5枚骰子共有(1)
2枚组成“一对”,共有以
(3)先将5枚骰子分成三组,其中二组各有2枚殷子,另外一组只有一枚殷子,又考虑到各有2枚骰子的二组内是不用考虑顺序的,所以5枚骰子分成三组共有而这三组骰子出现的点数都不一样有
种可能,所以所求概率为
(4)这里“三枚一样”是指这三枚以外的2枚骰子不成对,所以先从5枚骰子中任取3枚组成一组,共有(53)种取法,然后这一组骰子与剩下的2枚骰子出现的点数不一样,所以
第 2 页,共 48 页
个样本点,这是分母,以下分别求之.
(2)这里“一对”是指这一对以外的3枚骰子中不成对且不全相同,所以先从5枚骰子中任取
种取法,然后这“一对”骰子与剩下的3枚骰子出现的点数都不一样,所
种分法,
(5)先从5枚骰子中任取4枚组成一组,然后这一组骰子与剩下的一枚骰子各取不同的数,由此得
(6)五枚骰子出现的点数全部一样共有6种情况,所以
3. 设
是来自
的样本,
为其次序统计量, 令
证明【答案】令作变换
其中
函数为
该联合密度函数为可分离变量, 因
而
4 设.在, 且N 与
相互独立,
且
其雅可比行列式绝对值为
, 联合密度
相互独立.
则
的联合密度函数为
为独立同分布的随机变量序列, 且方差存在. 随机变量N 只取正整数值, 独立. 证明:
存
【答案】因为
所
第 3 页,共 48 页
以
5. 设随机变量X 的密度函数p (x )关于c 点是对称的,且E (X )存在,试证:
(1)这个对称中心c 既是均值又是中位数,即(2)如果c=0,则
因此
所以得
又由
所以
(2)当c=0时,
又由
由此得结论.
6. 设
独立同分布,其共同的密度函数为
(1)证明:(2)计算
和
的均方误差并进行比较;
的估计中,故
最优.
这说明是则Y 的密
都是θ的无偏估计;
由此得
【答案】(1)由p (x )关于c 点对称可知:
(3)证明:在均方误差意义下,在形如【答案】(1)先计算总体均值为θ的无偏估计. 又总体分布函数为度函数为
于是有
这表明
也是θ的无偏估计.
第 4 页,共 48 页
相关内容
相关标签