2017年山东大学经济学院432统计学[专业学位]之概率论与数理统计教程考研冲刺密押题
● 摘要
一、计算题
1. 一地质学家为研宄密歇根湖的湖滩地区的岩石成分,随机地自该地区取100个样品,每个样品有10块石子,记录了每个样品中属石灰石的石子数. 假设这100次观察相互独立,求这地区石子中石灰石的比例P 的最大似然估计. 该地质学家所得的数据如下表:
表
【答案】本题中,总体X 为样品中石灰石的个数,且X 服从参数为(10, P )的二项分布,即
为样本,则其似然函数为(忽略常数)
对数似然函数为
将对数似然函数关于P 求导并令其为0得到似然方程
解之得
由于
由二阶导数的性质知,P 的最大似然估计为
2. 某公司对其250名职工上班所需时间进行了调查, 下面是其不完整的频率分布表:
表
(1)试将频率分布表补充完整;
(2)该公司上班所需时间在半小时以内有多少人? 【答案】(1)由于频率和为1, 故空缺的频率为
(2)该公司上班所需时间在半小时以内的人所占频率为
该公司有职工
250人, 故该公司上班所需时间在半小时以内的人有人.
3. 设随机变量X 服从参数为X 的泊松分布,试求X 的前四阶原点矩、中心矩、偏度与峰度.
【答案】分几步进行.
(1)先求k 阶原点矩的递推公式. 按定义
显然
而当
时有
(2)由此递推公式可导出前四阶原点矩
.
(3)再计算前四阶中心矩;
(4)最后计算偏度卢;与峰度卢。
所以泊松分布是正偏分布,愈小偏度愈大.
所以泊松分布比标准正态分布更尖峭一些,A 愈小分布愈尖峭.
4. 假定考生成绩服从正态分布,在某地一次数学统考中,随机抽取了36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?
【答案】本题是关于正态总体均值的假设检验问题,由于总体方差未知,故用t 检验法,欲检验的一对假设为:
拒绝域为由已知条件因为著差异.
注:这里没给出容量为36的样本数据,只给出样本均值与样本标准差s. 由于与s 是正态分布
的充分统计量,而充分统计量是不会失落样本中的有用信息,故给出与s 的值,等价
于给出具体的样本数据. 这一现象会在很多场合里出现.
5. 为了研究本厂产品垫片与国内外同类产品在耐磨性能上的差别,特选国外一家产品、国内两家产品与本厂产品进行磨损试验,其试验数据用磨损率表示,它是愈小愈好. 磨损率的计算公式是
具体数据如下表所示:
表
1
当显著性水平为0.05时,
s=15, 故检验统计量的值为
故接受原假设,可以认为这次考试全体考生的平均成绩与70分无显
试在正态分布假设下对比四家同类产品的磨损率均值有无显著差异,若有显著差异,再作多重比较(取
).
【答案】首先计算各平方和
相关内容
相关标签