2018年仲恺农业工程学院轻工食品学院314数学(农)之工程数学—线性代数考研强化五套模拟题
● 摘要
一、解答题
1.
已知
对角矩阵.
【答案】A 是实对称矩阵
,
可得a=2.
此时
是二重根,
故
于是
必有两个线性无关的特征向量,
于是
知
是矩阵
的二重特征值,求a 的值,并求正交矩阵Q
使
为
解(2E-A )x=0,
得特征向量将
正交化:
解(8E-A )x=0,
得特征向量先
再将单位化,得正交矩阵:
且有
2.
已知矩阵
可逆矩阵P ,使
和
若不相似则说明理由.
试判断矩阵A 和B 是否相似,若相似则求出
【答案】由矩阵A 的特征多项式
得到矩阵A
的特征值是
由矩阵B 的特征多项式
得到矩阵B
的特征值也是
当
时,由秩
知
A 可以相似对角化.
而
有2个线性无关的解,
即
时矩阵A 有2个线性无关的特征向量,矩阵
时矩阵B 只有1个线性无
只有1个线性无关的解,即
关的特征向量,矩阵B 不能相似对角化. 因此矩阵A 和B 不相似.
3. 设三阶方阵A 、B
满足式
的值.
其中E 为三阶单位矩阵.
若
求行列
【答案】
由矩阵
知则
. 可
逆.
又
故
即
所以
即
而
故
4.
设矩阵求一个秩为2的方阵B. 使
【答案】
令
即
取.
进而解得的另一解为则有
.
的基础解系为:
方阵B 满足题意.
令
二、计算题
5.
设
是m
阶矩阵
的特征值,证明也是n 阶矩阵BA 的特征值.
特征向量
有
【答案】根据特征值的定义证明.
设A 是矩阵AB 的任-非零特征值
,是对应于它的特征向量.
即有用矩阵B 左乘上式两边,
得若再由
6.
设0,
故 7.
已知
则由特征值定义知,为BA 的特征值. 下面证明
.
式得
因此
事实上,由
证明A 的特征值只能取1或2.
是
的特征值. 但是,零矩阵只有特征值
则A=1或A=2.
【答案】设A 是A 的特征值,
则
是矩阵的一个特征向量
(1)求参数a ,b 及特征向量P 所对应的特征值; (2)问A 能不能相似对角化? 并说明理由. 【答案】(1)利用特征值和特征向量的定义. 设P 所对应的特征值是A , 则由题设
,
即
于是,
得到以
为未知数的线性方程组:
(2)A 不能相似于对角阵. 理由是:
当
故
是A 的三重特征值.
但
时. 容易求得矩阵A 的特征多
项式
从而
故齐次方程