当前位置:问答库>考研试题

2018年仲恺农业工程学院轻工食品学院314数学(农)之工程数学—线性代数考研强化五套模拟题

  摘要

一、解答题

1.

已知

对角矩阵.

【答案】A 是实对称矩阵

可得a=2.

此时

是二重根,

于是

必有两个线性无关的特征向量,

于是

是矩阵

的二重特征值,求a 的值,并求正交矩阵Q

使

解(2E-A )x=0,

得特征向量将

正交化:

解(8E-A )x=0,

得特征向量先

再将单位化,得正交矩阵:

且有

2.

已知矩阵

可逆矩阵P ,使

若不相似则说明理由.

试判断矩阵A 和B 是否相似,若相似则求出

【答案】由矩阵A 的特征多项式

得到矩阵A

的特征值是

由矩阵B 的特征多项式

得到矩阵B

的特征值也是

时,由秩

A 可以相似对角化.

有2个线性无关的解,

时矩阵A 有2个线性无关的特征向量,矩阵

时矩阵B 只有1个线性无

只有1个线性无关的解,即

关的特征向量,矩阵B 不能相似对角化. 因此矩阵A 和B 不相似.

3. 设三阶方阵A 、B

满足式

的值.

其中E 为三阶单位矩阵.

求行列

【答案】

由矩阵

知则

. 可

逆.

所以

4.

设矩阵求一个秩为2的方阵B. 使

【答案】

取.

进而解得的另一解为则有

.

的基础解系为:

方阵B 满足题意.

二、计算题

5.

是m

阶矩阵

的特征值,证明也是n 阶矩阵BA 的特征值.

特征向量

【答案】根据特征值的定义证明.

设A 是矩阵AB 的任-非零特征值

,是对应于它的特征向量.

即有用矩阵B 左乘上式两边,

得若再由

6.

设0,

故 7.

已知

则由特征值定义知,为BA 的特征值. 下面证明

.

式得

因此

事实上,由

证明A 的特征值只能取1或2.

的特征值. 但是,零矩阵只有特征值

则A=1或A=2.

【答案】设A 是A 的特征值,

是矩阵的一个特征向量

(1)求参数a ,b 及特征向量P 所对应的特征值; (2)问A 能不能相似对角化? 并说明理由. 【答案】(1)利用特征值和特征向量的定义. 设P 所对应的特征值是A , 则由题设

于是,

得到以

为未知数的线性方程组:

(2)A 不能相似于对角阵. 理由是:

是A 的三重特征值.

时. 容易求得矩阵A 的特征多

项式

从而

故齐次方程