当前位置:问答库>考研试题

2018年华中农业大学资源与环境学院314数学(农)之工程数学—线性代数考研基础五套测试题

  摘要

一、解答题

1.

已知三元二次型

(Ⅰ)用正交变换把此二次型化为标准形,并写出所用正交变换; (Ⅱ)若A+kE:五正定,求k 的取值. 【答案】(Ⅰ)因为A 各行元素之和均为0,

即值

由征向量.

因为

的特征向量.

1的线性无关的特

,由此可知

是A 的特征

其矩阵A 各行元素之和均为0, 且满足

其中

可知-1是A 的特征值

,不正交,将其正交化有

再单位化,可得

那么令

则有

(Ⅱ)因为A 的特征值为-1, -1, 0, 所以A+kE的特征值为k-l , k-1,k , 由A+kE正定知其特征值都大于0,

2.

已知矩阵可逆矩阵P ,使

若不相似则说明理由。

试判断矩阵A 和B 是否相似,若相似则求出

【答案】由矩阵A 的特征多项式

得到矩阵A

的特征值是当

时,由秩

有2个线性无关的解,即

时矩阵A 有2个线性无关的特征向量,矩阵

A 可以相似对角化,因此矩阵A 和B 不相似。

3. 设A

矩阵

且有唯一解. 证明:

矩阵

的解为【答案】

利用反证法,

假设以有

解矛盾,故假设不成立,

.

4. 已知A 是3阶矩阵,

(Ⅰ)证明

:(Ⅱ

)设

【答案】

(Ⅰ)由同特征值的特征向量,

又令即由

线性无关,得齐次线性方程组

线性无关.

有惟一解知

则方程组

. 即

可逆.

为A 的转置矩阵).

易知

于是方程组

为可逆矩阵,

且方程组

只有零解.

使

.

只有零

有非零解,即存在

有非零解,这与

是3维非零列向量,若线性无关;

非零可知,是A 的个

因为系数行列式为范德蒙行列式且其值不为0,

所以必有

线性无关;

(Ⅱ)因为

,

所以

二、计算题

5.

设向量组

的秩为2, 求a , b.

【答案】对含参数a 和b

的矩阵

作初等行变换,以求其行阶梯形

.

于是

6.

求B

【答案】由方

合并含有未知矩阵

B

的项,

其行列式

故A-E 可逆,

用左乘上式两边,即得