2017年宁波大学理学院872量子力学考研仿真模拟题
● 摘要
一、简答题
1. 写出电子自旋的二本征值和对应的本征态。 【答案】
2. 什么是塞曼效应?什么是斯达克效应?
【答案】塞曼效应是原子在外磁场中光谱发生分裂的现象;斯达克效应是原子在外电场作用下光谱发生分裂的现象。
3. 何谓正常塞曼效应?何谓反常塞曼效应?何谓斯塔克效应?
【答案】在强磁场中,原子发出的每条光谱线都分裂为三条的现象称为正常塞曼效应。在弱磁场中,原子发出的
每条光谱线都分裂为
条(偶数)的现象称为正常塞曼效应。原子置于外
电场中,它发出的光谱线会发生分裂的现象称为斯塔克效应。
4. 归一化波函数是否可以含有任意相因子 【答案】可以。因为即用任意相因子归一化。
5. 写出在【答案】
6. 自旋可以在坐标表象中表示吗?
【答案】自旋是内禀角动量,与空间运动无关,故不能在坐标空间表示出来。
7. 分别写出非简并态的一级、二级能量修正表达式。 【答案】
8. 简述波函数和它所描写的粒子之间的关系。
【答案】微观粒子的状态可用一个波函数完全描述,从这个波函数可以得出体系的所有性质。波函数一般应满足连续性、有限性和单值性三个条件。 微观粒子的状态波函数
用算符的本征函数
展开
如果
对整个空间积分等于1,则
对整个空间积分也等于1。
去乘以波函数,既不影响体系的量子状态,也不影响波函数的
表象中的泡利矩阵。
则在
态中测量粒子的力学量^
得到结果为
的几率是
得到结果在
范围内的几率
为
9. 非相对论量子力学的理论体系建立在一些基本假设的基础上,试举出二个以上这样的基本假设,并简述之。
【答案】(1)微观体系的状态被一个波函数完全描述,从这个波函数可以得出体系的所有性质。波函数一般应满足连续性、有限性和单值性三个条件。
(2)力学量用厄密算符表示。如果在经典力学中有相应的力学量,则在量子力学中表示这个力学量的算符,由经典表示式中将动量换为算符数。
(3)将体系的状态波函数
用算符的本征函数展开:
则在
盔中测量力学量得到结果为
(4)体系的状态波函数满足薛定谔方程
其中是体系的哈密顿算符。
的几率是
得到结果在
范围内的几率是
得出。表示力学量的算符组成完全系的本征函
(5)在全同粒子所组成的体系中,两全同粒子相互调换不改变体系的状态(全同性原理)。 以上选三个作为答案。
10.分别说明什么样的状态是束缚态、简并态与负宇称态?
【答案】当粒子的坐标趋向无穷远时,波函数趋向零,称之为粒子处于束缚态。若一个本征值对应一个以上的本征态,则称该本征值是简并的,所对应的本征态即为简并态,本征态的个数就是相应的简并度。将波函数中的坐标变量改变一个负号,若新波函数与原波函数相差一个负号,则称其为负宇称态。
二、计算题
11.设两个电子在弹性中心力场中运动,每个电子的势能是能和u (r )相比可以忽略,求这两个电子组成的体系波函数。
【答案】这个一个两电子体系,属于费米子系统。在不考虑电子之间库仑相互作用的情况下,有:
其中
分别为谐振子第m 、n 个能量本征函数。
如果电子之间的库仑
(1)当m=n时,由这两电子组成的体系波函数为:
(2)当时,由这两电子组成的体系波函数为:
其中:
12.考虑两个电子组成的系统。它们空间部分波函数在交换电子空间部分坐标时可以是对称的或反对称的。空间部分波函数是反对称时对应总的自旋平方对应总的自旋平方
本征值为
空间部分波函数对称时分别针对空间部分波函
的本征值为
本征值为0。假设两电子系统哈密顿量为
数是反对称和对称两种情形,求体系的能量。(提示:单电子自旋角动量平方算符
)。 【答案】利用应能量:
对应能量:
可知,空间部分波函数反对称时:
对
空间部分波函数对称时:
13.对于描述电子自旋的泡利矩阵(1)在表象中求(2)若明其物理意义.
(3)对于两个电子组成的体系,若用本征态,证明态矢量【答案】(1)在由
和由
表象中,
的归一化本征函数. 为某一方向余弦,证明算符
的本征值为±1,说
分别表示单电子自旋平方和自旋z 分量的共同
是体系总自旋平方的本征态.
很容易求得
的本征值与本征矢:
的本征方程
相关内容
相关标签