当前位置:问答库>考研试题

2017年浙江工商大学统计学动态(理论与实务)之统计学考研复试核心题库

  摘要

一、简答题

1. 简述系数、c 系数、系数的各自特点。

【答案】(1)

相关系数是描述

公式为:式中,列联表数据相关程度最常用的一种相关系数。它的计算《为列联表中的总频数,也即样本量。说系数适合

这个范围。

列联表的情况。C 系数的列联表,是因为对于

计算公式为:

列联表中的数据,计算出的系数可以控制在(2)列联相关系数又称列联系数,简称c 系数,主要用于大于

当列联表中的两个变量相互独立时,系数c=0, 但它不可能大于1。c 系数的特点是,其可能的最大值依赖于列联表的行数和列数,且随着R 和C 的增大而增大。

(3)克莱默提出了 V 系数。V 系数的计算公式为:

当两个变量相互独立时,当两个变量完全相关时,所以V 的取值在之间。如果列联表中有一维为2,即则V 值就等于值。

2. 考虑总体参数的估计量,简述无偏估计量与最小方差无偏估计量的定义。

【答案】①无偏性(unbiasedness )是指估计量抽样分布的数学期望等于被估计的总体参数。设总体参数为所选择的估计量为如果则称为的无偏估计量。对于待估参数,不同的样本值就会得到不同的估计值。这样,要确定一个估计量的好坏,就不能仅仅依据某次抽样的结果来衡量,而必须由大量抽样的结果来 衡量。对此,一个自然而基本的衡量标准是要求估计量无系统偏差。尽管在一次抽样中得到的估计值不一定恰好 等于待估参数的真值,但在大量重复抽样时,所得到的估计值平均起来应与待估参数的真值相同,即希望估计量 的均值应等于未知参数的真值,这就是无偏性的要求。 ②最小方差无偏估计是在无偏估计类中使均方误差达到最小的估计量,即在均方误差

是的一个无偏估计量,都有

则称是的一致最小方差无偏估计。

最小意义下的最优估计,它是在应用中人们希望寻求的一种估计量。设若对于的任一方差存在的无偏估计量

3. 说明计算统计量的步骤。

统计量的步骤:

之差平方; 除以【答案】计算(2)将(1)用观察值减去期望值(3)将平方结果(4)将步骤(3)的结果加总,即得:

4. 给出在一元线性回归中:

(1)相关系数的定义和直观意义;

(2)判定系数的定义和直观意义;

(3)相关系数和判定系数的关系。

【答案】(1)相关系数是根据样本数据计算的度量两个变量之间线性关系强度的统计量。若相关系数是根据总体全部数据计算的,称为总体相关系数,记为

称为样本相关系数,记为r 。样本

相关系数的计算公式为:

按上述计算公式计算的相关系数也称为线性相关系数,或称为相关系数。r 仅仅是x 若是根据样本数据计算的,则与y 之间线性关系的一个度量,它不能用于描述非线性关系。这意味着,r=0只表示两个变量之间不存在线性相关关系,并不说明变量之间没有任何关系,它们之间可能存在非线性相关关系。变量之间的非线性相关程度较大时,就可能会导致r=0。因此,当r=0或很小时,不能轻易得出两个变量之间不存在相关关系的结论,而应结合散点图做出合理的答释。

(2)回归平方和占总平方和的比例称为判定系数,记为其计算公式为:

判定系数测度了回归直线对观测数据的拟合程度。

的取值范围是越接近于1, 表明回归平方和占总平方和的比例越大,回归直线与各观测点越接近,用x 的变化来答释y 值变

差的部分就越多,回归直线的拟合程度就越好;反之,越接近于0, 回归直线的拟合程度就越差。

(3)相关系数和判定系数都是用来表明X 与Y 的关系,即X 对Y 的拟合程度。在一元线性回归中,相关系数实际上是判定系数的平方根。相关系数取值范围在卜之间。判定系数取值范围在[0, 1]之间。

5. 分层抽样与整群抽样有何异同?它们分别适合于什么场合?

【答案】(1)相同点:分层抽样和整群抽样都是需要事先按某一标志对总体进行划分的随机抽样。

不同点主要在于:分层抽样的划分标志与调查标志有密切关系,而整群抽样的划分标志不一定与调查标志有 关;分层抽样在总体的每个层内随机抽样,而整群抽样在总体全部群体中随机抽取一部分群体;比较计算公式可知,分层抽样的抽样误差取决于各层总体方差的平均数,而整群抽样的抽样误差取决于总体的群间方差;分层抽 样的目的(优点)主要是缩小抽样误差,满足推断各子总体数量特征的需要,而整群抽样的目的(优点)主要是 扩大抽样单位,简化抽样组织工作。

(2)适用场合:分层抽样用于层间差异大而层内差异小时,以及为了满足分层次管理决策需要时;整群抽样用于群间差异小而群内差异大时,或只有以群体为抽样单位的抽样框时等。

6. 简述非抽样误差类型。

【答案】非抽样误差是相对抽样误差而言的,是指除抽样误差之外的,由于其他原因引起的样本观察结果与总体 真值之间的差异。无论是概率抽样、非概率抽样,或是在全面调查中,都有可能产生非抽样误差。非抽样误差有以下几种类型:

(1)抽样框误差,是指抽样框中的单位与研宄总体的单位不存在一一对应的关系,使用这样的抽样框抽取样本就会出现一些错误。

(2)回答误差,是指被调查者在接受调查时给出的回答与真实情况不符。导致回答误差的原因有多种,主要有理答误差、记忆误差和有意识误差。

(3)无回答误差,是指被调查者拒绝接受调查,调查人员得到的是一份空白的答卷。

(4)调查员误差,是指由于调查员的原因而产生的调查误差。

(5)测量误差,是指如果调查与测量工具有关,则很可能产生测量误差。

二、计算题

7. 一家电器销售公司的管理人员认为,每月的销售额是广告费用的函数,并想通过广告费用对月销售额作 出估计。下面是近8个月的销售额与广告费用数据。

以月销售收入为因变量,电视广告费用和报纸广告费用为自变量,得到结果如下。