当前位置:问答库>考研试题

2017年烟台大学概率论基础复试仿真模拟三套题

  摘要

一、计算题

1. 甲乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内到达的时间是等可能的,如果甲船的停泊时间是一小时,乙船的停泊时间是两小时,求它们中任何一艘都不需要等候码头空出的概率是多少?

【答案】这个概率可用几何方法确定,记x 和y 分别为甲乙两艘轮船到达码头的时间,则(x ,y )的可能取值形成边长为24的正方形

其面积为

而事件A“不需要等候码头空出”有两

另一种情况是乙

所以事件A 可表示

种可能情况:一种情况是甲船先到,则乙船在一小时之后到达,即满足船先到,则甲船在两小时之后到达,即满

所以由几何方法得

所以事件A 的区域形成了图中的阴影部分,

其面积为

2. 用一个仪表测量某一物理量9次,得样本均值

(2)求该物理量真值的置信水平为0.99的置信区间. 【答案】(1)此处

,的

置信区间为

从而的置信水平为0.95的置信区间[0.1487,0.4215] (2)当未知时,的查表得

置信区间为

,因而的置信水平为0.99的置信区间为

第 2 页,共 18 页

,样本标准差s=0.22.

(1)测量标准差大小反映了测量仪表的精度,试求的置信水平为0.95的置信区间;

查表知

3. 口袋中有一个球,不知它的颜色是黑的还是白的. 现再往口袋中放入一个白球,然后从口袋中任意取出一个,发现取出的是白球,试问口袋中原来那个球是白球的可能性为多少?

【答案】记事件A 为“取出的是白球”,事件B 为“原来那个球是白球”.容易看出

另外由于对袋中原来那个球的颜色一无所知,故设是合理的. 由贝叶斯公式得

4. 写出以下正态分布的均值和标准差

.

【答案】对

所以

的均值有

所以对

的均值

_有

所以

的均值

标准差

标准差

标准差

5. 某单位调查了520名中年以上的脑力劳动者,其中136人有高血压史,另外384人则无,在有高血压史的136人中,经诊断冠心病及可疑者有48人,在无高血压史的384人中,经诊断为冠心病及可疑者的有36人. 从这个资料,对高血压与冠心病有无关联做检验,取

表示

【答案】该题完全类似于上题. 用A 表示有无高血压,它有两个水平:表示有高血压史,表示无高血压史,用B 表示诊断结果,它也有两个水平:表示诊断为冠心病及可疑者,诊断结果正常. 则由已知得下表:

检验的假设为

高血压与冠心病无关联,即A 与B 是独立的. 统计表示如下:

第 3 页,共 18 页

此列联表独立性检验的统计量可以表示成

此处此处观测值远远超过临界值,故拒绝原假

设,即认为高血压与冠心病有关系. 此处的P 值为

6. 将n 个完全相同的球(这时也称球是不可辨的)随机地放入N 个盒子中,试求:

(1)某个指定的盒子中恰好有k 个球的概率; (2)恰好有m 个空盒的概率;

(3)某指定的m 个盒子中恰好有j 个球的概率.

【答案】先求样本点总数,我们用N+1根火柴棒排成一行,火柴棒之间的N 个司隔恰好形成N 个盒子,并依次称它们为第1个盒子,第2个盒子,…,第N 个盒子,n 个球用“0”表示,考虑到两端必须是火柴棒方能形成N 个盒子,所以n 个(不可辨)球放入N 个(可辨)盒子中,就相当于把N-1根火柴棒(N+1根火柴棒中去掉两端的两根)和n 个“0”随机地排成一行,譬如N=4, n=3时,“10010111”表示第1个盒子中有2个球、第2个盒子中有1个球、第3、4个盒子中无球,这样一来,n 个球放入N 个盒子所有的样本点总数相当于:从N-1+n个位置任选n 个位置放“0”、其他位置放火柴棒,故样本点总数为

(1)记A 为事件“指定的某个盒子中恰有k 个球”,不失一般性,可认为第1个盒子中有k 个球,则余下n-k 个球放入另外N-1个盒子中,类似于样本点总数的计算,

此种样本点共有

考虑到球不可辨故

(2)记

为事件“恰有m 个空盒”,它的发生可分两步描述:

种取法.

第一步,从N 个盒子任取m 个盒子,共有

第二步,将n 个球放入余下的N_m个盒中,且这N —m 个盒子中都要有球,

这当然要求

否则第二步发生的概率为零,为了使第二步能发生,我们设想先把n 个

球排成一行,随机抽取球与球之间的n-1个间隔中的N-m-1个间隔放火柴棒即可,这有种可能.

综合上述两步,所求概率为

(3)若事件C 表示“指定的m 个盒子中恰有j 个球”,这意味着另外N-m 个盒子中放n-j 个球,

第 4 页,共 18 页