2017年中国人民大学统计学院805统计学之统计学考研强化模拟题
● 摘要
一、简答题
1. 利用相关系数如何判断变量之间相关的方向和相关关系的密切程度?
【答案】相关系数r 的取值范围在关关系;若
相关关系;若
相关关系。
当
说明两个变量之间的线性关系越强
时. 可视为中度相关
;说明两个变量之间的线性关系越弱。对于一时,
可视为高度相关时,说明两个变量之间的个具体的r 取值,根据经验可将相关程度分为以下几种情况:
当时。视为低度相关;当之间。若表明变量之间存在正线性相表明x 与y 之间存在负线性相关关系;若表明x 与y 之间为完全负线性相关关系。可见当表明x 与y 之间为完全正线性时,y 的取值完全依赖于X ,二者之间即为函数关系;当r=0时,说明两者之间不存在线性相关关系,但可能存在其他非线性
相关程度极弱,可视为不相关。但这种解释必须建立在对相关系数的显著性检验的基础之上。
2. 什么是抽样平均误差?影响抽样平均误差的因素有哪些?
【答案】抽样平均误差是指抽样平均数(或抽样成数)的标准差。它反映抽样平均数(或抽样成数)与总体平均数(或总体成数)的平均误差程度。
影响抽样平均误差的因素有四个:
(1)样本单位数目。在其他条件不变的情况下,抽样数目越多,抽样误差越少;抽样数目越少,抽样误差越大。当时,就是全面调查,抽样误差此时为零。
(2)总体标志变动程度。其他条件不变的情况下,总体标志变异程度越大,抽样误差越大;总体变异程度越小,抽样误差越小。
(3)抽样方法。一般讲,不重复抽样的抽样误差要小于重复抽样的抽样误差。当n 相对N 非常小时,两种抽样方法的抽样误差相差很小,可忽略不计。
(4)抽样组织方式。采用不同的抽样组织方式,也会有不同的抽样误差。一般讲分层抽样的抽样误差较小,而整群抽样的抽样误差较大。
3. 利用增长率分析时间序列时应注意哪些问题?
【答案】在应用増长率分析实际问题时,应注意以下几点:
(1)当时间序列中的观察值出现0或负数时,不宜计算增长率。这是因为对这样的序列计算增长率,要么不符合数学公理,要么无法解释其实际意义;
(2)在有些情况下,不能单纯就增长率论増长率,要注意增长率与绝对水平的结合分析。
4. 统计分组标志选择的原则。
【答案】在进行统计分组标志选择时要遵循三个原则:
(1)应根据研宄目的与任务选择分组标志。同一研宄总体,研宄的目的不同,可选用的分组标志也不同。
(2)要选用能反映事物本质或主要特征的标志。一般情况下,社会经济现象有多种特征,在选择分组标志 时,可以使用这种标志,也可以选择另一种标志,这就需要根据被研究对象的特征,选择主要的、能抓住事物本 质的标志进行分组。
(3)要根据现象所处的历史条件及经济条件来选择标志。由于社会是不断发展的,在不同的历史条件与经 济条件下,选择的分组标志也不一样,要根据情况的变化而变化。
5. 在多元线性回归中,为什么我们对整个回归方程进行检验后,还要对每个回归系数来进行检验呢?
【答案】在多元线性回归中,线性关系检验主要是检验因变量同多个自变量的线性关系是否显著,在个自变量中,只要有一个自变量与因变量的线性关系显著,F 检验就能通过,但这不一定意味着每个自变量与因变量的关系都显著。回归系数检验则是对每个回归系数分别进行单独的检验,它主要用于检验每个自变量对因变量的影响是否都显著。如果某个自变量没有通过检验,就意味着这个自变量对因变量的影响不显著,也许就没有必要将这个自变量放进回归模型中了。
6. 在假设检验中,犯两类错误之间存在什么样的数理关系?是否有什么办法使得两类错误同时减少?
【答案】第一类错误是指原假设为真,拒绝原假设,又称弃真错误,犯这类错误的概率记为第二类错误是指原假设为假,接受原假设,又称取伪错误,犯这类错误的概率记为
由于两类错误是矛盾的,在其他条件不变的情况下,减少犯弃真错误的可能性
犯取伪错误的可能性
一办法只有增大样本容量,这样既能保证满足取得较小的
7. 回归分析结果的评价。 又能取得较小的值。 势必增大
也就是说,
的大小和显著性水平的大小成相反方向变化。解决的唯
【答案】对回归分析结果的评价可以从以下四个方面入手:
(1)所估计的回归系数的符号是否与理论或事先预期相一致;
(2)如果理论上认为
归方程也应该如此;
(3)用判定系数来回答回归模型在多大程度上解释了因变量取值的差异;
(4)考察关于误差项的正态性假定是否成立。因为在对线性关系进行检验和对回归系数进行?检验时,都要求误差项服从正态分布,否则,所用的检验程序将是无效的。检验正态性的简单方法是画出残差的直方图或正态概率图。
8. 简述指数平滑法的基本含义。
【答案】指数平滑法是对过去的观察值加权平均进行预测的一种方法,该方法使得第
之间的关系不仅是正的,而且是统计上显著的,那么所建立的回期的预测值等于
期的实际观察值与第期预测值的加权平均值。指数平滑法是加权平均的一种特殊
形式,观察值时间越远,其权数也跟着呈现指数的下降,因而称为指数平滑。
使用指数平滑法时,关键的问题是确定一个合适的平滑系数因为不同的会对预测结果产生
不同的影响。当
值
大的权数;同样时,预测值仅仅是重复上一期的预测结果;
当时,预测值就是上一期实际
越接近1,模型对时间序列变化的反应就越及时,因为它对当前的实际值赋予了比预测值更越接近0, 意味着对当前的预测值赋予更大的权数,因此模型对时间序列变化的
但实际应用时,还应考虑预测误差,这里仍用误差反应就越慢。一般而言,当时间序列有较大的随机波动时,
宜选较大的以便能很快跟上近期的变化,当时间序列比较平稳时,宜选较小的
均方来衡量预测误差的大小,确定时,可选择几个进行预测,然后找出预测误差最小的作为最后的值。
9. 考虑总体参数的估计量,简述无偏估计量与最小方差无偏估计量的定义。
【答案】①无偏性(unbiasedness )是指估计量抽样分布的数学期望等于被估计的总体参数。设总体参数为所选择的估计量为如果则称为的无偏估计量。对于待估参数,不同的样本值就会得到不同的估计值。这样,要确定一个估计量的好坏,就不能仅仅依据某次抽样的结果来衡量,而必须由大量抽样的结果来 衡量。对此,一个自然而基本的衡量标准是要求估计量无系统偏差。尽管在一次抽样中得到的估计值不一定恰好 等于待估参数的真值,但在大量重复抽样时,所得到的估计值平均起来应与待估参数的真值相同,即希望估计量 的均值应等于未知参数的真值,这就是无偏性的要求。 ②最小方差无偏估计是在无偏估计类中使均方误差达到最小的估计量,即在均方误差
是的一个无偏估计量,都有
则称是的一致最小方差无偏估计。
10.简述系数、c 系数、系数的各自特点。
【答案】(1)相关系数是描述
式为:式中,列联表数据相关程度最常用的一种相关系数。它的计算公《为列联表中的总频数,也即样本量。说系数适合
这个范围。
列联表的情况。C 系数的列最小意义下的最优估计,它是在应用中人们希望寻求的一种估计量。设若对于的任一方差存在的无偏估计量联表,是因为对于
计算公式为:
列联表中的数据,计算出的系数可以控制在(2)列联相关系数又称列联系数,简称c 系数,主要用于大于
当列联表中的两个变量相互独立时,系数c=0, 但它不可能大于1。c 系数的特点是,其可能的最大值依赖于列联表的行数和列数,且随着R 和C 的增大而增大。
(3)克莱默提出了 V 系数。V 系数的计算公式为: