2017年天津职业技术师范大学机械工程学院803理论力学考研冲刺密押题
● 摘要
一、计算题
1. 已知搅拌机的主动齿轮相连,如图1所示。且杆端点C 的速度和轨迹。
以n=950r/min的转速转动。搅杆ABC 用销钉A ,B 与齿轮
各齿轮齿数为
求搅
图1
【答案】如图2所示,可知搅杆做平动。 因为所以其中
点C 的轨迹是半径为0.25m 的圆。
图2
2. 质量为m 的杆水平地放在两个半径相同的轮上, 两轮的中心在同一水平线上, 距离为2a. 两轮以等值而反向的角速度各绕其中心轴转动, 如图1所示. 杆AB 借助与轮接触点的摩擦力的牵带而运动, 此摩擦力与杆对滑轮的压力成正比, 摩擦因数为f. 如将杆的质心C 推离其对称位置点0, 然后释放. (1)证明质心C 的运动为谐振动, 并求周期T ; (2)若a=250mm, T=2s时, 求摩擦因数
f.
图1
【答案】
图2
(1)取杆为研究对象, 建立如图所示坐标系, 取O 点为坐标原点, 受力分析如图2所示 根据
可列方程:
解得:
摩擦力为:
杆的运动微分方程是:
代入数值, 整理得:
上式为谐振动微分方程, 其振动周期为:
(2)当a=250mm, T=2s, 解得
3 图所示均质滚子质量m=10kg, 半径r=0.25m, 能在斜面上保持纯滚动, 弹簧刚度系数k=20N/m, .
阻尼器阻力系数c=10N·s/m.求:(1)无阻尼的固有频率;(2)阻尼比;(3)有阻尼的固有频率;(4)此阻尼系统自由振动的周期
.
图
【答案】选取质心的位移x 为广义坐标, 系统的运动微分方程为
运动方程
消去F 和得:
(1)无阻尼的固有频率
(2)阻尼比
(3)有阻尼的固有频率
(4)此阻尼系统自由振动的周期