2017年南京邮电大学经济学院432统计学[专业硕士]考研导师圈点必考题汇编
● 摘要
一、简答题
1. 简述概率抽样与非概率抽样的区别。
【答案】(1)概率抽样也称随机抽样,是指遵循随机原则进行的抽样,总体中每个单位都有一定的机会被选入样本。
非概率抽样是相对于概率抽样而言的,指抽取样本时不是依据随机原则,而是根据研宄目的对数据的要求, 采用某种方式从总体中抽出部分单位对其实施调查。
(2)概率抽样与非概率抽样的区别:概率抽样是依据随机原则抽选样本,这时样本统计量的理论分布是存 在的,因此可以根据调查的结果对总体的有关参数进行估计,计算估计误差,得到总体参数的置信区间,并且在 进行抽样设计时,对估计的精度提出要求,计算为满足特定精度要求所要的样本量。而非概率抽样不是依据随机 原则抽选样本,样本统计量的分布是不确切的,因而无法使用样本的结果对总体相应的参数进行推断。
2. 统计数据质量的基本标准是什么?
【答案】(1)准确:用数字语言来反映客观实际;(2)快速:统计信息服务必须具有时效性和紧迫性;(3)完整:调查单位没有遗漏,调查项目没有缺陷,资料数据齐全;(4)精练:统计信息具有针对性、有效性、精确性。
3. 正态分布所描述的随机现象有什么特点?为什么许多随机现象服从或近似服从正态分布?
【答案】(1)正态分布所描述的随机现象具有如下特点: ①正态曲线的图形是关于的对称钟形曲线,且峰值在处;
②正态分布的两个参数均值和标准差一旦确定,正态分布的具体形式也就唯一确定,不同参数取值的 正态分布构成一个完整的“正态分布族”。
③正态分布的均值可以是实数轴上的任意数值,它决定正态曲线的具体位置,标准差相同而均值不同 的正态曲线在坐标轴上体现为水平位移。 ④正态分布的标准差
⑤当为大于零的实数,它决定正态曲线的“陡_”或“扁平”程度。越大,正态曲线 越扁平;越小,正态曲线越陡峭。 的取值向横轴左右两个方向无限延伸时,正态曲线的左右两个尾端也无限渐近横轴,但理论上永远不会与之相父。
⑥与其他连续型随机变量相同,正态随机变量在特定区间上的取值概率由正态曲线下的面积给出,而且其曲线下的总面积等于1。
(2)如果原有总体是正态分布,那么,无论样本量的大小,样本均值的抽样分布都服从正态分布。若原有 总体的分布是非正态分布,随着样本量的增大(通常要求
第 2 页,共 54 页 ,不论原来的总)
体是否服从正态分布,样本均值的抽样分布都将趋于正态分布,其分布的数学期望为总体均值方差为总体方差的这就是统计上著名的中心极限定理。因此许多随机现象服从或近似服从正态分布。
4. 在单个总体均值的假设检验中,检验统计量要根据总体是否服从正态分布、总体方差是否己知,以及样本量的大小来确定。说明在不同情况下分别需要使用何种检验统计量。
【答案】在对单个总体均值进行假设检验时,采用何种检验统计量取决于所抽取的样本是大样本情况。
(1)在大样本情况下,样本均值的抽样分布近似服从正态分布。设总体均值为
为当总体方差已知时,总体均值的检验统计量为:
当总体方差
为:
(2)在小样本情况下,假设总体服从正态分布: ①当总体方差 已知时,样本均值的抽样分布近似服从正态分布。总体均值检验的统计量为:
②当总体方差未知时,需要用样本方差代替总体方差样本均值的抽样分布服从自由未知时,可以用样本方差来近似代替总体方差,此时总体均值检验的统计量总体方差
!还是小样本此外还需要区分总体是否服从正态分布、总体方差是否已知等几种度为(n -l )的t 分布。因此需要采用t 分布来检验总体均值。检验的统计量为:
5. 若有线性回归模型问:
(1)该模型是否违背古典线性回归模型的假定,请简要说明。
(2)如果对该模型进行估计,你会采用什么方法?请说明理由。
【答案】(1)该模型违背了古典线性回归模型的假定。古典线性回归模型要求误差项具有等方差性,即对于不同的自变量x 具有相同的方差。而由题意可知,误差项的方差为
量有关。
(2)如果对该模型进行估计,会采用加权最小二乘法。加权最小二乘法是在平方和中加入权
数以调整各项在平方和中的作用。即寻找参数的估计值使得离差平方和
与自变
其中
达到最小。这样,就消除了异方差性的影响。
第 3 页,共 54 页
6. 简述季节指数的计算步骤。
【答案】以移动平均趋势剔除法为例,计算季节指数的基本步骤为:
,(1)计算移动平均值(如果是季度数据采用4项移动平均,月份数据则采用12项移动平均)
并将其结果进行“中心化”处理,也就是将移动平均的结果再进行一次2项的移动平均,即得出“中心化移动平均值”
(2)计算移动平均的比值,也称为季节比率,即将序列的各观察值除以相应的中心化移动平均值,然后再计算出各比值的季度(或月份)平均值。
(3)季节指数调整。由于各季节指数的平均数应等于1或100%,若根据第2步计算的季节比率的平均值不等于1时,则需要进行调整。具体方法是:将第(2)步计算的每个季节比率的平均值除以它们的总平均值。
7. 解释总平方和、回归平方和、残差平方和的含义,并说明它们之间的关系。
【答案】(1)总平方和(S^T)是实际观测值与其均值的离差平方和,即
(2)回归平方和(^狀)是各回归值
来解释的变差部分。
(3)残差平方和(SSE )是各实际观测值与回归值的离差平方和,即
称为误差平方和。
(4)三者之间的关系
8. 解释多元回归模型、多元回归方程、估计的多元回归方程的含义。
【答案】(1)多元回归模型:设因变量为如何依赖于自变量
式中(2)多元回归方程:
根据回归模型的假定有
方程,它描述了因变量y 的期望值与自变量
(3)估计的多元回归方程:
回归方程中的参数
数据去估计它们。当用样本统计
量
时,就得到了估计的
多元回归方程,其一般形式为:
第 4 页,共 54 页 与实际观测值的均值y 的离差平方和,即其反映了在y 的总变差中由于x 与y 之间的线性关系引起的y 的变化部分,它是可以由回归直线它是除了的线性影响之外的其他因素对变差的作用,是不能由回归直线来解释的变差部分。其又 个自变量分别为是模型的参数描述因变量y
为误差项。 称为多元回归和误差项的方程称为多元回归模型。其一般形式可表示为
:之间的关系。 是未知的,需要利用样本去估计回归方程中的未知参
数
相关内容
相关标签