2018年沈阳师范大学教育科学学院617心理学基础之现代心理与教育统计学考研基础五套测试题
● 摘要
一、概念题
1. 假设检验
【答案】在统计学中,通过样本统计量得出的差异作出一般性结论,判断总体参数之间是否存在差异,这种推论过程称假设检验。假设检验是推论统计中最重要的内容,它的基本任务就是事先对总体参数或总体分布形态做出一个假设,然后利用样本信息来判断原假设是否合理,从而决定是否接受原假设。检验的推理逻辑是一定概率保证下的反证法。一般包括四个步骤:(1)根
据问题要求提出原假设 (2)寻找检验统计量,用于提取样本中的用于推断的信息,要求在Ho 成立的条件下,统计量的分布已知且不包含任何未知参数;(3)由统计量的分布,计算“概率值”或确定拒绝域与接受域;(4)由具体样本值计算统计量的观测值,对统计假设作出判断。若Ho 的内容涉及到总体参数,称为参数假设检验,否则为非参数检验。
2. 检验的显著性水平
【答案】检验的显著性水平指在假设检验中,虚无假设正确时而拒绝虚无假设所犯错误的概率。在假设检验中有可能会犯错误,如果虚无假设正确却把它当成错误的加以拒绝,犯这类错误的概率用a 表示,a 就是假设检验中的显著性水平。通常选择α=0.05作为检验的显著性水平。也就是说每当实验结果发生的概率小于或等于0.05的时候,就拒绝虚无假设。
3. 频率
【答案】频率(frequency )①亦称“相对频数”。某随机事件A , 在N 次试验中出现的次数n 与试验总次数N 的比值。亦称事件A 发生的频率。记为其值介于0〜1之间。事件的频率越大,说明它出现的可能性越大;反之则越小。一个事件的频率不是一个固定的数值,与总次数N 有关,且即使再重复N 次试验,次数n 也可能不同。但在大量重复试验中频率具有稳定性,即当试验次数N 无限增大时,频率F 会在某个固定值上下波动,而且偏差越来越小。②简谐振动基本物理量。物体每秒振动的次数。单位是赫兹(Hz )。在数学关系上频率是物体振动周期的倒数。
4. 抽样分布
【答案】抽样分布又称取样分布指某种统计量的概率分布,它是根据样本的所有可能的样本观察值计算出来的某个统计量的观察值的分布。抽样分布指样本统计量的分布,它是统计推论的重要依据。在科学研宄中,一般是通过一个样本进行分析,只有知道了样本统计
量的分布规律,才能依据样本对总体进行推论,也才能确定推论正确或错误的概率是多少。常用的样本分布有平均数及方差的分布。
二、简答题
5. 估计总体平均数落入该区间的正确可能性概率为1-«,犯错误的可能性概率为«。1. 在进行差异的显著性检验时,若将相关样本误作独立样本处理,对差异的显著性有何影响,为什么?
【答案】(1)在进行差异的显著性检验时,首先需要考虑样本是否服从正态分布,如果服从正态分布,还需要考虑总体方差是否已知,然后看样本是否是独立样本。若将相关样本误作独立样本处理,则忽视了样本数据之间的一致性,导致错误地运用计算公式,差异的显著性也会受到误估,使本来可能有显著差异变成无显著差异。
(2)因为相关样本与独立样本不同,会运用不同的计算方法计算显著性。相关样本与独立样本是根据两个样本是否来自同一个总体来划分的。
①如果是独立样本,其和(或差)的方差等于各自方差的和,即
在进行差异的显著性检验中采用以下公式:
②相关样本之间存在着一一的对应关系。如果是相关样本前后两次结果则相互影响,而不独立。当两个变量之间相关系数为r 时,两变量差的方差为:
在进行差异的显著性检验中采用以下公式:
由计算公式可以看出,独立样本和相关样本在进行差异的显著行检验时,使用了不同计算公式,相关样本的标准误可能会比独立样本的标准误小,使得计算出的Z 值大,从而更容易达到显著性水平,所以如果将相关样本误作独立样本处理,会使本来可能有显著差异变成无显著差异。
6. 回归分析与相关分析的区别和联系是什么?
【答案】相关分析和回归分析的联系是:它们通常都是基于两正态连续变量的假设,都是处理两变量间相互关系的统计方法,通常两种方法不同时出现在文章中;
二者的区别是作为相互关系分析的方法,相关分析是通过提供一个相关系数来考察两变量间的联系程度,而回归分析则是重在建立两变量间的函数关系式,因此通常可以先考察相关系数的显著型,如果显著则可以进一步考虑建立变量间的回归方程。此外,相关分析和回归分析又各有一些具体方法用于处理不同的情况,如相关分析还包括等级相关,质量相关和品质相关,回归分析还包括非线性回归等。
7. 试解释交互作用。
【答案】(1)下面是两个2×2的实验设计范式:
图1 2×2实验设计图示例
在实验甲中,A 因素从变化
为
还是时,无论
在还
是水平
,
与的差都
是说明A 因素的变化与或
称之为没有交互作用。
在实验乙中,在时时在时在时表明A 因素的变化与B 因即B 因素的变化与A 因素的不同水平有关;同样在无关。同样B 因素从变化为时,无论水平上,都等于3, 说明B 因素的变化与或无关。因此A ,B 两个因素彼此不影响,
素的水平也有关。在这种情况下,要考虑A ,B 两个因素的彼此影响,即“交互作用”,用AXB 表示。运用多因素方差分析,不仅能检验出各个因素对因变量的影响,还可以检验出因素与因素相结合共同发生的影响,即这种交互作用。
如要直观分析两个因素间是否有交互作用,还可以将上述情况制作成交互作用图,如图2所示。用图来表示交互作用时,一个是比较折线位置的高低,一个是比较折线在不同折点上的变化。基本原则是观察折线之问的平行程度。一般在交互作用图中,如果A , B 二因素间没有交互作用,则两线平行,表示因素之间相互独立;两线越不平行,代表因素之间交互作用越明显。一般而言,显著的交互作用,在交互作用图上会出现交叉的折线。当然,这只是直观示意,交互作用是否显著,必须进行方差分析。
相关内容
相关标签