当前位置:问答库>考研试题

2018年华南农业大学动物科学学院314数学(农)之工程数学—线性代数考研强化五套模拟题

  摘要

一、解答题

1.

为三维单位列向量,并且

证明:

(Ⅰ)齐次线性方程组Ax=0有非零解; (Ⅱ)A

相似于矩阵

故Ax=0有非零解.

(Ⅱ)由(Ⅰ

)知向量.

又且

另外,由

故可知

为A 的特征值

,为4的2重特征值

为对应的特征向量.

为A 的3个

为4的单重特征值.

故A

有零特征值

的非零解即为

对应的特征

【答案】(Ⅰ)由于A 为3阶方阵,且

为两个正交的非零向量,从而线性无关.

线性无关的特征向量,

2.

已知三元二次型

即A

相似于矩阵

其矩阵A 各行元素之和均为0, 且满足

其中

(Ⅰ)用正交变换把此二次型化为标准形,并写出所用正交变换; (Ⅱ)若A+kE:五正定,求k 的取值. 【答案】(Ⅰ)因为A 各行元素之和均为0,

,由此可知

是A 的特征

由征向量.

因为

是的特征向量.

1的线性无关的特

可知-1是A 的特征值

,不正交,将其正交化有

再单位化,可得

那么令

则有

(Ⅱ)因为A 的特征值为-1, -1, 0, 所以A+kE的特征值为k-l , k-1,k , 由A+kE正定知其特征值都大于0,

得 3.

已知

对角矩阵.

【答案】A 是实对称矩阵

可得a=2.

此时

是二重根,

于是

必有两个线性无关的特征向量,

于是

是矩阵的二重特征值,求a 的值,并求正交矩阵Q

使为

解(2E-A )x=0,

得特征向量将

正交化:

解(8E-A )x=0,

得特征向量先

再将单位化,得正交矩阵:

专注考研专业课13年,提供海量考研优质文档!

且有

4. 证明n 阶矩阵

与相似.

【答案】设 分别求两个矩阵的特征值和特征向量为,

故A 的n 个特征值为

且A 是实对称矩阵,则其一定可以对角化,且

所以B 的n 个特征值也为

=-B的秩显然为1,故矩阵B 对应n-1重特征值

对于n-1重特征值由于矩阵(0E-B )

的特征向量应该有n-1个线性无关,进一步

矩阵B 存在n 个线性无关的特征向量,即矩阵B 一定可以对角化,且从而可