当前位置:问答库>考研试题

2017年四川师范大学心理统计学(跨专业加试)考研复试核心题库

  摘要

一、概念题

1. 概率

【答案】概率(probability ),概率论术语指,随机事件发生可能性大小度量指标。①概率描述性定义。随机事件A 在所有试验中发生可能性大小的量值,称为事件A 的概率,记为P (A )。如将一枚均匀硬币上抛足够多次,会发现“正面朝上”的事件出现的频率在0.5上下波动。这种频率稳定性从实践上表明随机事件的概率是客观存在的。②概率的精确定义。设P 是定义在“事件域”上的一个集合函数,若满足下列条件,则称之为概率:

a.P

两互不相容对一

切,则

(性质(ⅲ)称为完全可加性)。若P 是概率,则不可能事件的概率为零,即对任意事件有应当注意,若P (A )=0, 并不能说A —定是不可能事件,即不可能事件的概率一定是零,但概率为零的事件未必是不可能事件。这是由于P 是集合函数,可能在某些点集上(如有限个点)为零。同理,概率为1的事件,未必是必然事件。

2. 集中量数与差异量数

【答案】集中量数与差异量数都是描述一组数据特征的统计量。集中量数是表现数据集中性质或集中程度的,数据的集中情况指一组数据的中心位置;集中趋势的度量即确定一组数据的代表值,描述集中情况的度量包括:算术平均数、中位数、众数、几何平均数、调和平均数和加权平均数等。差异量数是表现数据分散性质或分散程度的,数据的差异性即为离中趋势;常见的差异量数有标准差或方差、全距、平均差、四分差和各种百分差等。

3. 逐步回归

【答案】逐步回归是多元回归中选择自变量,建立最优回归方程的一种方法。其基本原理和过程是:按各个自变量对因变量作用的大小,从大到小逐个引入回归方程。每引入一个自变量都要对回归方程中每一个自变量(包括刚刚引入的那个)的作用进行显著性检验,若发现作用不显著的自变量,就要将其剔除(因为引入新的自变量后,原来方程中显著作用的自变量有可能变成不显著)。这样逐个地引进和剔除,直至没有自变量可引入也没有自变量应从方程中剔除为止,这时的回归方程一般来说是最优的。

二、简答题

4. 为什么要做区间估计?怎样对平均数作区间估计?

【答案】(1)做区间估计是因为

①当用点估计来对总体参数进行估计时,总是以误差的存在为前提,但又不能提供正确估计的概率。

这是由于点估计是用估计量的一个具体的数值作为待估参数的估计值,由于估计量是一个随机变量,所以点估计以随机变量中的某一个值来做估计,很显然会产生一定的误差。若误差较小,这个点估计值还是一个好的估计值,若误差较大,这个点估计便失去了意义。

②区间估计在一定意义上弥补了点估计的不足之处。

区间估计是根据估计量以一定可靠程度推断总体参数所在的区间范围,它是用数轴上的一段距离表示未知参数可能落入的范围,它虽不具体指出总体参数等于什么,但能指出未知总体参数落入某一区间的概率有多大。区间估计在点估计的基础上,不仅给出一个估计的范围,使总体参数包含在这个范围之内,而且还能给出估计精度并说明估计结果的有把握的程度。

(2)对平均数进行区间估计的步骤如下

①根据实得样本的数据,计算样本的平均数与标准差。 ②计算标准误

有两种情况:

a. 当总体方差

b. 当总体方差未知时,

用样本的无偏估计量即方差样本的有偏估计方差则

③确定置信水平或显著性水平。

④根据样本平均数的抽样分布,确定查何种统计表。

确定a=0.05或0.01的横坐标值。一般当总体方差已知时,查正态表;当样本方差未知时,查t 值表(当

时,也可查正态表作近似计算)。确定⑤计算置信区间。

a. 如果查正态分布表,置信区间可写作:

b. 如果查t 值表,置信区间则:

⑥解释总体平均数的置信区间。

5. 回归分析与因素分析有什么区别?

【答案】因素分析又称因子分析,是处理多变量数据的一种统计方法,它可

已知时,

计算,如果计算的是与

以揭示多变量之间的关系,其主要目的是从为数众多的可观测的变量中概括和综合出少数几个因子,用较少的因子变量来最大程度地概括和解释原有的观测信息,从而建立起简洁的概念系统,揭示出事物之间本质的联系。

6. 直条图适合哪种资料? 自选数据绘制直条图。

【答案】直条图也称条形图,主要用于表示离散型数据资料,即计数资料。它是以条形的长短表示各事物间数量的大小与数量之间的差异情况。条形图中一个轴是分类轴,表示类别,描述计数数据;另一个轴是数量轴,表示大小多少,描述计量数据,在这个轴上数据单的大小取决于原始数据。

7. 试解释交互作用。

【答案】(1)下面是两个2×2的实验设计范式:

图1 2×2实验设计图示例

在实验甲中,A 因素从变化

还是时,无论

在还

是水平

与的差都

是说明A 因素的变化与或

称之为没有交互作用。

在实验乙中,在时时在时在时表明A 因素的变化与B 因即B 因素的变化与A 因素的不同水平有关;同样在无关。同样B 因素从变化为时,无论水平上,都等于3, 说明B 因素的变化与或无关。因此A ,B 两个因素彼此不影响,

素的水平也有关。在这种情况下,要考虑A ,B 两个因素的彼此影响,即“交互作用”,用AXB 表示。运用多因素方差分析,不仅能检验出各个因素对因变量的影响,还可以检验出因素与因素相结合共同发生的影响,即这种交互作用。

如要直观分析两个因素间是否有交互作用,还可以将上述情况制作成交互作用图,如图2所示。用图来表示交互作用时,一个是比较折线位置的高低,一个是比较折线在不同折点上的变化。基本原则是观察折线之问的平行程度。一般在交互作用图中,如果A , B 二因素间没有交互作用,则两线平行,表示因素之间相互独立;两线越不平行,代表因素之间交互作用越明显。一般而言,显著的交互作用,在交互作用图上会出现交叉的折线。当然,这只是直观示意,交互作用是否显著,必须进行方差分析。