当前位置:问答库>考研试题

2018年陕西省培养单位水土保持与生态环境研究中心603高等数学(丙)之工程数学-线性代数考研基础五套测试题

  摘要

一、解答题

1.

设矩阵.

【答案】

求A 的特征值,并讨论A 是否可对角化? 若A 可对角化,则写出其对角

于是A 的3

个特征值为(Ⅰ)当

时,A 有3个不同特征值,故4可对角化,且可对角化为

(Ⅱ)当a=0时

此时A 有二重特征值1,

仅对

应1个线性无关的特征向量,故此时A 不可对角化.

(Ⅲ)

此时

A

有二重特征

仅对应1个线性无关的特征向量,故此时A 不可对角化.

2. 已知A 是3阶矩阵

是3维线性无关列向量,且

(Ⅰ)写出与A 相似的矩阵B ; (Ⅱ)求A 的特征值和特征向量:

(Ⅲ)求秩

【答案】(Ⅰ)由于

则有

线性无关,故P 可逆.

即A 与B 相似.

(Ⅱ

)由

A 的特征值为-1, -1,-1.

对于矩阵B ,

所以

可知矩阵B 的特征值为-1, -1,-1, 故矩阵

得特征向量

那么由:

是A 的特征向量,于是A 属于特征值-1

的所有特征向量是

全为0.

(Ⅲ

)由

3.

已知

其中E

是四阶单位矩阵

是四阶矩阵A 的转置矩阵

芄中

求矩阵A

【答案】

作恒等变形,

有即

故矩阵可逆.

则有

以下对矩阵做初等变换求逆,

所以有

4.

已知

二次型的秩为

2.

求实数a 的值;

求正交变换x=Qy使得f 化为标准型. 【答案】

⑴由

可得

则矩阵

解得B 矩阵的特征值为