当前位置:问答库>考研试题

2017年山西师范大学教育统计与测量(加试)考研复试核心题库

  摘要

一、概念题

1. 抽样误差

【答案】抽样误差指由抽样而造成的样本参数与总体参数之间差异或各样本参数之间差异。比如:样本平均数与总体平均数之间差异或各样本平均数之间差异。在抽样研究中,抽样误差是不可避免的,但可以估计其大小。

2. 总体

【答案】总体(population )又译“母体”,统计学术语,指一个统计问题中研宄对象的全体。由具有某种研宄特征的个体构成。从总体中抽取一部分个体,就构成总体的一个样本。如,研宄小学生的推理能力,记X 为每个小学生的推理能力,则X 的任一个可能取值是一个个体,X 的所有可能取值的集合则是一个总体。如果随机抽取n 个小学生,测量他们的推理能力为.Y .\这就是一个取自总体X 的样本。可根据包含个体的数目,可分为有限总体和无限总体。总体本身的大小是有限还是无限,取决于研宄问题的推理范围。心理学研宄中常为无限总体。在推断统计中被定义为一个随机变量,可运用概率论等数学工具进行统计推断。

3. 古典概率

【答案】古典概率也叫先验概率,是指在特殊情况下直接计算的比值。计算方法是事件A 发生的概率等于A 包含的基本事件数M 与基本事件总数N 之比。古典概率是最简单的随机现象的概率计算,建立在这样几个特定条件上的,即:事件的互斥性、事件的等概率性以及事件组的完备性。

二、简答题

4. 简述使用积差相关系数的条件。

【答案】积差相关又较积矩相关,是求直线相关的基本方法。积差相关系数适合的情况如下:

(1)两列数据都是测量数据,而且两列变量各自总体的分布是正态的,即正态双变量。为了判断计算相关的两列变量其总体是否为正态分布,一般要根据已有的研究资料进行查询。如果没有资料查询,研究者应取较大样本分别对两变量作正态性检验。这里只要求保证双变量总体为正态分布,而对要计算相关系数的两样本的观测数据并不一定要求正态分布。

(2)两列变量之间的关系应是直线性的。如果是非直线性的双列变量,不能计算线性相关。判断两列变量之间的相关是否直线式,可以作相关散布图进行线性分析。相关散布图是以两列变量中的一列变量为横坐标,以另一变量为纵坐标,画散点图。如果呈椭圆形则说明两列变量

是线性相关的,如果散点是弯月状(无论弯曲度大小或方向),说明两变量之间呈非线性关系。

(3)实际测验中,计算信度涉及的积差相关时,分半的两部分测验须满足在平均数、标准差、分布形态、测题间相关、内容、形式和题数都相似的假设条件。

另外,积差相关要求成对的数据,即若干个体中每个个体都有两种不同的观测值。任意两个个体之间的观测值不能求相关。每对数据与其他对数据相互独立。计算相关的成对数据的数目不少于30对,否则数据太而缺乏代表性。

5. 对两个以上平均数两两之间的差异检验为什么不能两两之间进行t 检验?

【答案】同时比较的平均数越多,其中差异较大的一对所得t 值超过原定临界值的概率就越大,这时《错误的概率将明显增加,或者说本来达不到显著性水平的差异就很容易被说成是显著了,这时用f 检验就不适宜。比如要比较3个总体平均数之间的差异,如果用t 检验就需要比较3

6. 回归分析与相关分析的区别和联系是什么?

【答案】相关分析和回归分析的联系是:它们通常都是基于两正态连续变量的假设,都是处理两变量间相互关系的统计方法,通常两种方法不同时出现在文章中;

二者的区别是作为相互关系分析的方法,相关分析是通过提供一个相关系数来考察两变量间的联系程度,而回归分析则是重在建立两变量间的函数关系式,因此通常可以先考察相关系数的显著型,如果显著则可以进一步考虑建立变量间的回归方程。此外,相关分析和回归分析又各有一些具体方法用于处理不同的情况,如相关分析还包括等级相关,质量相关和品质相关,回归分析还包括非线性回归等。

7. 最小二乘法中各点到拟合直线的距离为什么要取铅直距离而不取垂直距离?

【答案】这是有最小二乘法的推导过程所决定的。 设

们也可以

把这组数据看作是一个离散的函数。根据观察,如果这组数据图像“很像”一条直线(不是直线),

我们的问题是确定一条直线

该是

程:

8. 在心理学研究中,以样本对总体判断的数理理论依据。

【答案】(1)在心理学研究中,以样本对总体判断必须以一定的统计理论为基础。推论统计的理论和原理包括抽样理论、估计理论和统计检验原理。

次,假如每次比较的置信区间为95%, 那么3

次比较后检验的可靠性就降低为是直角平面坐标系下给出的一组数据,若我,使得它能“最好”的反映出这组数据的变化。对个别观察值来说,它可能是正的,也可能是负的。为了不使它们相加彼此抵消,故“最好”应

最小,即这时误差的平方和最小,这时可以求得比较精确的回归方 由于是散点之间连线的最小距离,因此这个距离不是到拟合直线的垂直距离。

①抽样理论及其方法主要讨论在什么情况下可以从样本的特性推论出总体的特性。其中一个最重要的条件就是样本抽取的原则,只有抽样具有随机性,才能保证推论具有某种程度的准确性。

②估计理论主要是根据随机抽样的结果来估计总体分布的参数值,分为点估计和区间估计。

③统计检验主要是根据实际的抽样结果来推论有关总体特征的假设是否与具体的随机抽样所提供的信息相一致。

(2)当总体参数不清楚时,用一个特定值,一般就是样本统计量对总体参数进行估计。以样本对总体判断的数理理论依据是样本分布理论,即概率发生的机会。统计分析中一般认为,0.05或0.01属于小概率事件,小概率事件在一次抽样中是不可能出现的。

样本分布的规律:

①样本统计量为正态分布或接近正态分布的两种情况,凡符合这两种情况的分布,都可以根据正态分布的概率进行统计推论。

②总体分布非正态,但方差己知,这时当样本足够大时其样本平均数的分布 为渐进正态分布,接近正态分布的程度与样本n 及总体偏斜程度有关。

③依据随机取样原则,自正态分布的总体中抽取容量为n 的样本,当n 足够大时

样本方差及标准差的分布,渐趋正态分布。

(3)假设检验是通过样本统计量得出的差异做出一般性结论,判断总体参数之间是否存在差异。假设检验的原理是概率性质的反证法。为了检验虚无假设,首先假定虚无假设为真。在虚无假设为真的前提下,如果导致违反逻辑或违背人们常识和经验的不合理现象出现,则表明“虚无假设为真”的假定是不正确的,也就不能接受虚无假设。若没有导致不合理现象出现,那就认为“虚无假设为真”的假定是正确的,也就是说要接受虚无假设。假设检验中的“不合理现象”是指小概率事件在一次试验中发生了。小概率事件原理认为“小概率事件在一次试验中几乎是不可能发生的”。

9. 简述条图、直方图、圆形图(饼图)、线图以及散点图的用途。

【答案】这几种图是统计学中最常用的图形,条图和直方图都用于表示变量各取值结果的次数或相对次数,即次数分布图。不同的是前者用于离散或分类变量,后者用于连续变量(分组后)。圆形图用于表示离散变量的相对次数,即频率,整个圆面积为1,各扇形块表示各类别的频率。线图用于表示连续变量在某个分类变量各水平上的均值,如各年级的考试成绩均分,常用于组间比较中。散点图用于两连续变量的相关分析,可将两变量成对数据的值作为横、纵坐标标于图上,根据散点的形状可以大致判断两变量是否存在相关以及相关的程度。

三、计算题