当前位置:问答库>考研试题

2017年山西师范大学教育统计与测量(加试)之心理与教育统计学考研复试核心题库

  摘要

目录

2017年山西师范大学教育统计与测量(加试)之心理与教育统计学考研复试核心题库(一) . 2 2017年山西师范大学教育统计与测量(加试)之心理与教育统计学考研复试核心题库(二) 14 2017年山西师范大学教育统计与测量(加试)之心理与教育统计学考研复试核心题库(三) 22 2017年山西师范大学教育统计与测量(加试)之心理与教育统计学考研复试核心题库(四) 29 2017年山西师范大学教育统计与测量(加试)之心理与教育统计学考研复试核心题库(五) 35

第 1 页,共 44 页

一、概念题

1. 推论统计

【答案】推论统计又称推断统计,主要研宄如何通过局部数据所提供的信息,推论总体或全局的情形;如何对假设进行检验和估计;如何对影响事物变化的因素进行分析;如何对两件事物或多种事物之间的差异进行比较等。这是推论统计要研宄的内容,常用的统计方法有:假设检验

的各种方法、总体参数特征值的估计方法(又称总体参数的估计)和各种非参数的统计方法等等。

2. 描述统计

【答案】描述统计指研宄如何整理心理教育科学实验或调查的数据,描述一组数据的全貌,表达一件事物的性质的统计方法。比如整理实验或调查来的大量数据,找出这些数据分布的特征,计算集中趋势、离中趋势或相关系数等,将大量数据简缩,找出其中所传递的信息。

3. 无偏估计

【答案】无偏估计是评价估计量的好坏的一个指标。设参数则它表明对 估计量进行多次观测,其正负偏差趋于抵消,而平均取值正好是待估参数,则称

的无偏估计量。如样本均值 是总体均值的无偏估计量。 为参数的估计量为若满足,

二、简答题

4. 正态分布的特征是什么,统计检验中为什么经常要将正态分布转化成标准正态分布?

【答案】正态分布也称常态分布或常态分配。是连续随机变量概率分布的一种。描述正态分布曲线的一般方程为:

式中:是圆周率3.1415…

是自然对数的底2.71828…

为随机变量取值为理论平均数

为理论方差

为概率密度,即正态分布的纵坐标。

(1)正态分布的特征

第 2 页,共 44 页

①正态分布的形式是对称的,它的对称轴是经过平均数点的垂线,正态分布中,平均数、中数、众数三者相等,此点y 值最大(0.3989)。左右不同间距的y 值不同,各相当间距的面积相等,y 值也相等。

②正态分布的中央点(即平均数点)最高,然后逐渐向两侧下降,曲线的形式是先向内弯,然后向外弯,拐点位于正负1个标准差处,曲线两端向靠近基线处无限延伸,但终不能与基线相交。

③正态曲线下的面积为1, 由于它在平均数处左右对称,故过平均数点的垂线将正态曲线下的面积划分为相等的两部分,即各为0.50。正态曲线下各对应的横坐标(即标准差)处与平均数之间的面积可用积分公式计算。因正态曲线下每一横坐标所对应的面积与总面积(总面积为1)之比其值等于该部分面积值,故正态曲线下的面积可视为概率,即值为每一横坐标值(x 加减一定标准差)的随机变量出现的概率。

④正态分布是一族分布。它随机变量的平均数、标准差的大小与单位不同而有不同的分布形态。如果平均数相同,标准差不同,这时标准差大的正态分布曲线形式低阔;如果标准差小,则正态曲线的形式高狭。

⑤正态分布下,标准差与概率有一定数量关系。

(2)统计检验中经常将正态分布转化为标准正态分布是因为标准正态分布的Z 分数不仅能表明原始分数在分布中的地位,而且能在不同分布的各个原始分数之间进行比较,同时,还能用代数方法处理,因此,它被教育统计学家称为“多学科表示量数”,有着广泛的用途。

①用于比较几个分属性质不同的观测值在各自数据分布中相对位置的高低。

Z 分数可以表明各个原始数据在该组数据分布中的相对位置,它无实际单位,可对不同的观测值进行比较。这里所说的数据分布中相对位置包括两个意思,一个是表示某原始数据以平均数为中心以标准差为单位所处距离的远近与方向;另一个意思是表示某原始数据在该组数据分布中的位置, 即在该数据以下或以上的数据各有多少。如果在一个正态分布(或至少是一个对称分布)中,这两个意思可合二为一。但在一个偏态分布中,这两个意思就不能统一。

在实际的教育与心理研究中,经常会遇到属于几种不同质的观测值,此时,不能对它们进行直接比较,但若知道各自数据分布的平均数与标准差,就可分别求出Z 分数进行比较。

一个原始分数被转换为Z 分数后,就可知道它在平均数以上或以下几个标准差的位置,从而知道它在分布中的相对地位。当原始分数的分布是正态分布时,只要求出分布中某一原始分数的Z 分数,就可以通过查正态分布表得知此原始分数的百分等级,从而知道在它之下的分数个数占全部分数个数的百分之几,进一步明确此分数的相对地位。

②计算不同质的观测值的总和或平均值,以表示在团体中的相对位置。

第 3 页,共 44 页

不同质的原始观测值因不等距,也没有一致的参照点,因此不能简单地相加或相减。计算平均数时要求数据必须同质,否则会使平均数没有意义。但是,当研究要求合成不同质的数据时,如果已知这些不同质的观测值的次数分布为正态,这时可采用Z 分数来计算不同质的观测值的总和或平均值。

③表示标准测验分数。

经过标准化的教育和心理测验,如果其常模分数分布接近其正态分布,为了克服标准分数出现的小数、负数和不易为人们所接受等缺点,常常是将其转换成正态标准分数。转换公式为:

式中:

为经过转换后的标准正态分数

A 、B 为常数

指转换前的标准分数,a 为测验常模的标准差。

标准分数经过这样的线性转换后,仍然保持着原始分数的分布形态,同时仍具有原来标准分数的一切优点。例如,早期的智力测验中是运用比率智商(IQ )作为智力测查的指标。

5. 哪些测量和统计的原因会导致两个变量之间的相关程度被低估。

【答案】影响两个变量之间的相关程度被低估的原因有:

(1)测量原因:测量方法的选择、两个变量测验材料的选择和收集、测量工具的精确性、测量中出现的误差、测验中主试和被试效应、测量的信度和效度、测验分数的解释等。

(2)统计原因:全距限制,指相关系数的计算要求每个变量内各个分数之间必须有足够大的差异,数值之间必须有显著的分布跨度或变异性,所以全距限制问题会导致低相关现象;没有满足计算相关系数的前提假设也会低估相关系数,比如用皮尔逊相关计算非线形关系的两个变量间的相关系数。

6. 简述最小二乘法。

【答案】最小二乘法是建立精确的回归方程经常采用的方法,其基本过程如下: 设

图像“很象”

一条直线(不是直线),我们的问题是确定一条直线使得它能“最好”地反映出这组数据的变化。对个别观察值来说,它可能是正的,也可能是负的。为了不使它们相加彼此抵消,故“最好”应该是

确的回归方程:

7. 回归分析与相关分析的区别和联系是什么?

【答案】相关分析和回归分析的联系是:它们通常都是基于两正态连续变量的假设,都是处理两变量间相互关系的统计方法,通常两种方法不同时出现在文章中;

第 4 页,共 44 页 是直角平面坐标系下给出的一组数据, 我们也可以把这组数据看作是一个离散的函数。根据观察,如果这组数据最小,即这时误差的平方和最小,这时可以求得比较精