2017年中国地质大学(武汉)经济管理学院958统计学原理之统计学:从数据到结论考研冲刺密押题
● 摘要
一、简答题
1. 构造下列维数的列联表,并给出检验的自由度。
a.2行5列 b.4行6列 c.3行4列
【答案】i 行j 列联表,如表所示。
而
a. 当
b.
当
c.
当,所以 检验的自由度=(行数_1)(列数一 1)时,表9-8即为2行5列的列联表,其时,表9-8即为4行6列的列联表,其时,表9-8即为3行4列的列联表,其检验的自由度=检验的自由度=检验的自由度=
2. 什么是同度量因素?同度量因素在编制加权综合指数中有什么作用?
【答案】在统计学中,一般把相乘以后使得不能直接相加的指标过渡到可以直接相加的指标的那个因素,称为同度量因素或同度量系数。
在编制指数时,对于不能直接相加的指标,可通过同度量因素把指标过渡到具有可加性。
3. 简述指数平滑法的基本含义。
【答案】指数平滑法是对过去的观察值加权平均进行预测的一种方法,该方法使得第
形式,观察值时间越远,其权数也跟着呈现指数的下降,因而称为指数平滑。
使用指数平滑法时,关键的问题是确定一个合适的平滑系数因为不同的会对预测结果产生
不同的影响。当
值
大的权数;同样时,预测值仅仅是重复上一期的预测结果;
当时,预测值就是上一期实际
越接近1,模型对时间序列变化的反应就越及时,因为它对当前的实际值赋予了比预测值更越接近0, 意味着对当前的预测值赋予更大的权数,因此模型对时间序列变化的
第 2 页,共 42 页 期的预测值等于
期的实际观察值与第期预测值的加权平均值。指数平滑法是加权平均的一种特殊
反应就越慢。一般而言,当时间序列有较大的随机波动时,
宜选较大的以便能很快跟上近期的变化,当时间序列比较平稳时,宜选较小的
最后的值。
4. 简述标准化值的意义及计算公式。
【答案】变量值与其平均数的离差除以标准差后的值称为标准分数,也称标准化值或分数。其计算公式为:
标准差。
标准分数可以测量每个数据在该组数据中的相对位置,并可以用它来判断一组数据是否有离群数据。比如, 如果某个数值的标准分数为就知道该数值低于平均数1.5倍的标准差。在对多个具有不同量纲的变量进行处理时,常常需要对各变量进行标准化处理。实际上,z 分数只是将原始数据进行了线性变换,它并没有改变一个数据在该组数据中的位置,也没有改变该组数据分布的形状,而只是将该组数据变为平均数为0, 标准差为1。
5. 简述假设检验的过程。
【答案】假设检验的过程如下:
(1)根据所研宄问题的要求提出原假设(或称为零假设、无效假设)和备择假设确定显著性水平。显著性水平为拒绝假设检验是犯第一类错误的概率。
(2)选择合适的检验方法,确定适当的检验统计量,确定统计量的分布,并由假设计算其数值。
(3)根据统计量确定值,做出统计推断。根据计算的统计量,查阅相应的统计表,确定值,以值与显著性水平比较,若
6. 方差分析中的基本假定。 则拒绝接受若则不拒绝 式中为变量的标准化值,是该组数据均值,s 为该组数据的但实际应用时,还应考虑预测误差,这里仍用误差均方来衡量预测误差的大小,确定时,可选择几个进行预测,然后找出预测误差最小的作为【答案】方差分析中有三个基本假定:(1)每个总体都应服从正态分布。也就是说,对于因素的每一个水平,其观测值是来自正态分布总体的简单随机样本;(2)各个总体的方差
的。
7. 简述描述离散程度的统计量和适用类型。
【答案】衡量数据离散程度的统计量主要有极差、平均差、方差和标准差,其中最常用的是方差和标准差。
(1)极差是指一组数据的最大值与最小值之差。用R 表示,其计算公式为:
极差是描述数据离散程度的最简单测度值,计算简单,易于理答,但它容易受极端值的影响。
第 3 页,共 42 页 必须相同。也就是说,对于各组观察数据,是从具有相同方差的正态总体中抽取的;(3)观测值是独立
由于极差只是利用了一组数据两端的信息,不能反映出中间数据的分散状况,因而不能准确描述出数据的分散程度。
(2)平均差也称平均绝对离差,它是各变量值与其平均数离差绝对值的平均数。平均差以平均数为中心,反映了每个数据与平均数的平均差异程度,它能全面准确地反映一组数据的离散状况。平均差越大,说明数据的离散程度越大;反之说明数据的离散程度小。为了避免离差之和等于零而无法计算平均差这一问题,平均差在计算时对离差取了绝对值,以离差的绝对值来表示总离差,这就给计算带来了不便,因而在实际中应用较少。但平均差的实际意义比较清楚,容易理答。
(3)方差是各变量值与其平均数离差平方的平均数。它在数学处理上是通过平方的办法消去离差的正负号, 然后再进行平均,方差开方后即得到标准差,方差或标准差能较好地反映出数据的离散程度,是实际中应用最广泛的离散程度测度值。与方差不同的是,标准差是具有量纲的,它与变量值的计量单位相同,其实际意义要比方差清楚。因此,在对实际问题进行分析时更多地使用标准差。
8. 在单个总体均值的假设检验中,检验统计量要根据总体是否服从正态分布、总体方差是否己知,以及样本量的大小来确定。说明在不同情况下分别需要使用何种检验统计量。
【答案】在对单个总体均值进行假设检验时,采用何种检验统计量取决于所抽取的样本是大样本情况。
(1)在大样本情况下,样本均值的抽样分布近似服从正态分布。设总体均值为
为当总体方差已知时,总体均值的检验统计量为:
当总体方差
为:
(2)在小样本情况下,假设总体服从正态分布: ①当总体方差 已知时,样本均值的抽样分布近似服从正态分布。总体均值检验的统计量为:
②当总体方差未知时,需要用样本方差代替总体方差样本均值的抽样分布服从自由未知时,可以用样本方差来近似代替总体方差,此时总体均值检验的统计量总体方差
!还是小样本此外还需要区分总体是否服从正态分布、总体方差是否已知等几种度为(n -l )的t 分布。因此需要采用t 分布来检验总体均值。检验的统计量为:
二、计算题
第 4 页,共 42 页