2017年中国地质大学(武汉)经济管理学院958统计学原理之统计学:从数据到结论考研强化模拟题
● 摘要
一、简答题
1. 回归分析结果的评价。
【答案】对回归分析结果的评价可以从以下四个方面入手:
(1)所估计的回归系数的符号是否与理论或事先预期相一致;
(2)如果理论上认为
归方程也应该如此;
(3)用判定系数来回答回归模型在多大程度上解释了因变量取值的差异;
(4)考察关于误差项的正态性假定是否成立。因为在对线性关系进行检验和对回归系数进行?检验时,都要求误差项服从正态分布,否则,所用的检验程序将是无效的。检验正态性的简单方法是画出残差的直方图或正态概率图。
2. 什么是同度量因素?同度量因素在编制加权综合指数中有什么作用?
【答案】在统计学中,一般把相乘以后使得不能直接相加的指标过渡到可以直接相加的指标的那个因素,称为同度量因素或同度量系数。
在编制指数时,对于不能直接相加的指标,可通过同度量因素把指标过渡到具有可加性。
3. 解释多重判定系数和调整的多重判定系数的含义和作用。
【答案】(1)多重判定系数是多元回归中的回归平方和占总平方和的比例,它是度量多元回归方程拟合程度的一个统计量,反映了在因变量y 的变差中被估计的回归方程所解释的比例,其计算公式为 之间的关系不仅是正的,而且是统计上显著的,那么所建立的回
(2)调整的多重判定系数考虑了样本量(n )和模型中自变量的个数(k )的影响,这就使得
的值永远小于
而且的值不会由于模型中自变量个数的增加而越来越接近1,
其计算公式为
4. 说明回归模型的假设以及当这些假设不成立时的应对方法。
【答案】(1)多元回归模型的基本假定有: ①自变量
③对于自变
量
第 2 页,共 45 页 ; 是非随机的、固定的,且相互之间互不相关(无多重共线性) 的方
差都相同,且不序列相关,
即的所有
值②误差项s 是一个期望值为0的随机变量,即
④误差项是一个服从正态分布的随机变量,且相互独立,即
(2)若模型中存在多重共线性时,解决的方法有:
第一,将一个或多个相关的自变量从模型中剔除,使保留的自变量尽可能不相关。
第二,如果要在模型中保留所有的自变量,那就应该:避免根据统计量对单个参数进行检验;对因变量Y 值的推断(估计或预测)限定在自变量样本值的范围内。
若模型中存在序列相关时,解决的方法有:如果误差项不是相互独立的,则说明回归模型存在序列相关性
,这时首先要查明序列相关产生的原因。如果是回归模型选用不当,则应改用适当的回归模型;如果是缺少重要的自变量,则应増加自变量;如果以上两种方法都不能消除序列相关性,则需采用迭代法、差分法等方法处理。
若模型中存在异方差性时,解决的方法有:当存在异方差性时,普通最小二乘估计不再具有最小方差线性估计的性质,而加权最小二乘估计则可以改进估计的性质。加权最小二乘估计对误差项方差小的项加一个大的权数,对误差项方差大的项加一个小的权数,因此加强了小方差性的地位,使离差平方和中各项的作用相同。
5. 在多元线性回归中,为什么我们对整个回归方程进行检验后,还要对每个回归系数来进行检验呢?
【答案】在多元线性回归中,线性关系检验主要是检验因变量同多个自变量的线性关系是否显著,在个自变量中,只要有一个自变量与因变量的线性关系显著,F 检验就能通过,但这不一定意味着每个自变量与因变量的关系都显著。回归系数检验则是对每个回归系数分别进行单独的检验,它主要用于检验每个自变量对因变量的影响是否都显著。如果某个自变量没有通过检验,就意味着这个自变量对因变量的影响不显著,也许就没有必要将这个自变量放进回归模型中了。
6. 全概率公式与逆概率公式分别用于什么场合?
【答案】(1)全概率公式为:
其中,是互不相容的事件且
如果对于某一复杂事件A 的概率,能够构造合适的完备事件组,使得这些事件的概率和给定这些事件下A 的条件概率较易于确定,就可以用全概率公式。
(2)逆概率公式也称贝叶斯公式,即
式中:表示完备事件组。
中每个事件的逆概率公式是要在事件A 已经发生的条件下来计算完备事件组
第 3 页,共 45 页
发生概率。
7. 欲调查广州市初中学生的身高情况,随机抽取100名广州市初中学生,测量了身高。
(1)用此例说明这几个统计概念,总体(population ), 样本(sample ), 参数(pammeter ), 统计量(statistics )。
(2)请说明如何对这100例身高数据进行描述性统计分析。
【答案】(1)总体(population )是包含所研宄的全部个体(数据)的集合,它通常由所研宄的一些个体组成。 本例中的总体是广州市所有初中学生。
样本(sample )是从总体中抽取的一部分元素的集合,构成样本的元素的数目称为样本量(sample size)。 本例中的样本是随机抽取的100名广州市初中学生,其中样本量为100。
参数(parameter )是用来描述总体特征的概括性数字度量,它是研究者想要了解的总体的某种特征值。本 例中广州市所有初中学生的平均身高即是一个参数。
统计量(statistic )是用来描述样本特征的概括性数字度量。它是根据样本数据计算出来的一个量,由于 抽样是随机的,因此统计量是样本的函数。随机抽取的100名广州市初中学生的平均身高即是一个统计量。
(2)所谓描述性统计分析,就是对一组数据的各种特征进行分析,以便于描述测量样本的各种特征及其所 代表的总体的特征。主要包括集中趋势的描述,可计算身高的均值,中位数和众数,也可采用箱线图直观的反映 数据的集中趋势以及是否存在异常值;离散程度的描述,可计算身高的方差,变异系数,四分位差或极差,也可 采用折线图或散点图等直观反映数据的离散程度;分布的偏态与峰度描述,可计算偏度和峰度值,或采用茎叶图 或直方图直观的反映分布是否与正态分布或单峰偏态分布逼近。
8. 下面两个统计图分别是对某数据集中y 关于x 的线性回归分析后的残差(Residuad )请指出这个回归分析所存在的问题,并提出解诀方案。
【答案】由残差图可知,两个变量之间可能为非线性关系。表明所选择的线性回归分析模型不合理,应该考虑选 用非线性模型。处理非线性回归的基本方法是,通过变量变换,将非线性回归化为线性回归,然后用线性 回归方法处理。假定根据理论或经验,已获得输出变量与输入变量之间的非线性表达式,但表达式的系 数是未知的,要根据输入输出的n 次观察结果来确定系数的值。按最小二乘法原理来求出系数值。
第 4 页,共 45 页