当前位置:问答库>考研试题

2018年仲恺农业工程学院植物病理学314数学(农)之工程数学—线性代数考研核心题库

  摘要

一、解答题

1. 已知A

矩阵,齐次方程组

的基础解系是

与由

的解.

得到

所以矩阵

的基础解系为

则既可由

作初等行变换,有

不全为

当a=0时,

解出

因此,Ax=0与Bx=0

的公共解为 2.

设矩阵.

【答案】

求A 的特征值,并讨论A 是否可对角化? 若A 可对角化,则写出其对角

其中t 为任意常数.

线性表出,也可

有非零公共解,求a 的值并求公共解.

贝腕阵

的列向量(即矩阵

作初等行变换,有

又知齐

次方程组Bx=0

的基础解系是

(Ⅰ)求矩阵A ;

(Ⅱ

)如果齐次线性方程组

【答案】(1

)记

A

的行向量)是齐次线性方程组

(Ⅱ)设齐次线性方程组Ajc=0与Sx=0

的非零公共解为由

线性表出,

故可设

于是

专注考研专业课

13年,提供海量考研优质文档!

于是A 的3个特征值为(Ⅰ)当

时,A 有3个不同特征值

,故4

可对角化,且可对角化为

(Ⅱ)当a=0

此时A 有二重特征值1,

仅对

应1个线性无关的特征向量,故此时A 不可对角化.

(Ⅲ)

时,

此时

A

有二

重特征值

仅对应1个线性无关的特征向量,故此时A 不可对角化.

3. 已知

A 是

3阶矩阵

(Ⅰ)写出与A 相似的矩阵B ; (Ⅱ)求A 的特征值和特征向量: (Ⅲ)求秩

【答案】(Ⅰ)由于

线性无关,故P 可逆.

3维线性无关列向量,且

专注考研专业课13年,提供海量考研优质文档!

则有即A 与B 相似.

(Ⅱ

)由

A 的特征值为-1, -1,-1.

对于矩阵B ,

所以

可知矩阵B 的特征值为-1, -1,-1, 故矩阵

得特征向量

那么由:

是A 的特征向量,于是A 属于特征值-1

的所有特征向量是

全为0.

(Ⅲ

)由

4.

已知

对角矩阵.

【答案】A 是实对称矩阵

可得a=2.

此时

是二重根,

于是

必有两个线性无关的特征向量,

于是

是矩阵

的二重特征值,求a 的值,并求正交矩阵Q

使

芄中

解(2E-A )x=0,

得特征向量将

正交化:

解(8E-A )x=0,

得特征向量先

再将单位化,得正交矩阵: