2017年河北工程大学统计学Ⅰ复试仿真模拟三套题
● 摘要
一、简答题
1. 说明回归模型的假设以及当这些假设不成立时的应对方法。
【答案】(1)多元回归模型的基本假定有: ①自变量
③对于自变
量
④误差项是一个服从正态分布的随机变量,且相互独立,即
(2)若模型中存在多重共线性时,解决的方法有:
第一,将一个或多个相关的自变量从模型中剔除,使保留的自变量尽可能不相关。
第二,如果要在模型中保留所有的自变量,那就应该:避免根据统计量对单个参数进行检验;对因变量Y 值的推断(估计或预测)限定在自变量样本值的范围内。
若模型中存在序列相关时,解决的方法有:如果误差项不是相互独立的,则说明回归模型存在序列相关性
,这时首先要查明序列相关产生的原因。如果是回归模型选用不当,则应改用适当的回归模型;如果是缺少重要的自变量,则应増加自变量;如果以上两种方法都不能消除序列相关性,则需采用迭代法、差分法等方法处理。
若模型中存在异方差性时,解决的方法有:当存在异方差性时,普通最小二乘估计不再具有最小方差线性估计的性质,而加权最小二乘估计则可以改进估计的性质。加权最小二乘估计对误差项方差小的项加一个大的权数,对误差项方差大的项加一个小的权数,因此加强了小方差性的地位,使离差平方和中各项的作用相同。
2. 简述概率抽样与非概率抽样的区别。
【答案】(1)概率抽样也称随机抽样,是指遵循随机原则进行的抽样,总体中每个单位都有一定的机会被选入样本。
非概率抽样是相对于概率抽样而言的,指抽取样本时不是依据随机原则,而是根据研宄目的对数据的要求, 采用某种方式从总体中抽出部分单位对其实施调查。
(2)概率抽样与非概率抽样的区别:概率抽样是依据随机原则抽选样本,这时样本统计量的理论分布是存 在的,因此可以根据调查的结果对总体的有关参数进行估计,计算估计误差,得到总体参数的置信区间,并且在 进行抽样设计时,对估计的精度提出要求,计算为满足特定精度要求所要的样本量。而非概率抽样不是依据随机 原则抽选样本,样本统计量的分布是不确切的,因
第 2 页,共 22 页 是非随机的、固定的,且相互之间互不相关(无多重共线性); 的方
差都相同,且不序列相关,
即
的所有
值②误差项s 是一个期望值为0的随机变量,即
而无法使用样本的结果对总体相应的参数进行推断。
3. 举例说明什么是列联表的独立性检验。
【答案】变量分为定量变量和定性变量。对于定量变量我们用回归分析等方法机进行研宄。对于定性变量,如吸烟是否与患癌症有关、性别与是否喜欢数学有关、年龄和喜欢的电视节目类型是否有关等等,我们对其进行列联 表的独立性检验。列联表的独立性检验是对一个分类变量的检验,因其分析过程可以通过列联表的方式呈现,故又可称为列联分析。
独立性检验就是分析列联表中行变量和列变量是否相互独立。
例如:为了研究年龄和喜欢的节目类型是否有关系,某单位对闲暇时间进行了全面调查,根据不同年龄档和喜爱收看电视节目的类型进行了如下的统计分类:
按照假设检验的步骤
:
按照假设检验的步骤:
设定假设:
(行变量与列变量独立)
(行变量与列变量不独立) (其中是行变量,是列变量)
选取统计量:
(其中,
第i 行第j 列类别的期望频数;并且
为列联表中第i 行第j 列类别的实际频数;
最后带入数字,进行判断。看是否有行向量与列向量独立。若拒绝原假设,即行向量与列向量不独立,即年龄和喜欢的节目类型有关系。反之,年龄和喜欢的节目类型无关。
4. 什么叫变异、变量和变量值,试举例说明。
【答案】标志在同一总体不同总体单位之间的差别称为变异。例如:人的性别标志表现为男、女;年龄标志表现为20岁、30岁等。
变异标志又称为变量,是说明现象某种特征的概念,其特点是从一次观察到下一次观察结果会呈现出差别或 变化。变量的具体取值称为变量值。具体包括:
(1)分类变量,如“性别”就是分类变量,其变量值为“男”或“女”;
第 3 页,共 22 页 为列联表中
“二等品”、“三等品”、(2)顺序变量,如“产品等级”就是顺序变量,其变量值可以为“一等品”、
“次品”等;
(3)数值型变量,如“年龄”是连续数值型变量,变量值为非负数;“企业数”是离散数值型变量,变量 值为 1,2,……
5. 欲调查广州市初中学生的身高情况,随机抽取100名广州市初中学生,测量了身高。
(1)用此例说明这几个统计概念,总体(population ), 样本(sample ), 参数(pammeter ), 统计量(statistics )。
(2)请说明如何对这100例身高数据进行描述性统计分析。
【答案】(1)总体(population )是包含所研宄的全部个体(数据)的集合,它通常由所研宄的一些个体组成。 本例中的总体是广州市所有初中学生。
样本(sample )是从总体中抽取的一部分元素的集合,构成样本的元素的数目称为样本量(sample size)。 本例中的样本是随机抽取的100名广州市初中学生,其中样本量为100。
参数(parameter )是用来描述总体特征的概括性数字度量,它是研究者想要了解的总体的某种特征值。本 例中广州市所有初中学生的平均身高即是一个参数。
统计量(statistic )是用来描述样本特征的概括性数字度量。它是根据样本数据计算出来的一个量,由于 抽样是随机的,因此统计量是样本的函数。随机抽取的100名广州市初中学生的平均身高即是一个统计量。
(2)所谓描述性统计分析,就是对一组数据的各种特征进行分析,以便于描述测量样本的各种特征及其所 代表的总体的特征。主要包括集中趋势的描述,可计算身高的均值,中位数和众数,也可采用箱线图直观的反映 数据的集中趋势以及是否存在异常值;离散程度的描述,可计算身高的方差,变异系数,四分位差或极差,也可 采用折线图或散点图等直观反映数据的离散程度;分布的偏态与峰度描述,可计算偏度和峰度值,或采用茎叶图 或直方图直观的反映分布是否与正态分布或单峰偏态分布逼近。
6. 简述相关系数和函数关系的差别。
【答案】变量之间的关系可分为两种类型:函数关系和相关关系。
(1)函数关系 设有两个变量
和
(2)相关关系
相关关系是指变量之间确实存在的但关系值不固定的相互依存关系。在这种关系中,当一个(或几个)变量的值确定以后,另一个变量的值虽与它(或它们)有关,但却不能完全确定。这是一种非确定的关系。
变量随变量一起变化,并完全依赖于当变量取某个数值时,依确定的关系取相应的值,则称是的函数。由此可见函数关系是一种一一对应的确定性关系。
二、计算题
第 4 页,共 22 页