当前位置:问答库>考研试题

2017年河北科技大学统计学复试仿真模拟三套题

  摘要

一、简答题

1. 统计数据质量的基本标准是什么?

【答案】(1)准确:用数字语言来反映客观实际;(2)快速:统计信息服务必须具有时效性和紧迫性;(3)完整:调查单位没有遗漏,调查项目没有缺陷,资料数据齐全;(4)精练:统计信息具有针对性、有效性、精确性。

2. 回归分析结果的评价。

【答案】对回归分析结果的评价可以从以下四个方面入手:

(1)所估计的回归系数的符号是否与理论或事先预期相一致;

(2)如果理论上认为

归方程也应该如此;

(3)用判定系数来回答回归模型在多大程度上解释了因变量取值的差异;

(4)考察关于误差项的正态性假定是否成立。因为在对线性关系进行检验和对回归系数进行?检验时,都要求误差项服从正态分布,否则,所用的检验程序将是无效的。检验正态性的简单方法是画出残差的直方图或正态概率图。

3. 简述相关系数和函数关系的差别。

【答案】变量之间的关系可分为两种类型:函数关系和相关关系。

(1)函数关系 设有两个变量

(2)相关关系

相关关系是指变量之间确实存在的但关系值不固定的相互依存关系。在这种关系中,当一个(或几个)变量的值确定以后,另一个变量的值虽与它(或它们)有关,但却不能完全确定。这是一种非确定的关系。

4. “假设检验的基本思路是:概率性质的反证法,主要依据的是:小概率事件原理”。你同意这种说法吗?简要叙述你对假设检验的理解和检验步骤。

【答案】同意。

假设检验所遵循的推断依据是统计中的“小概率原理”:小概率事件在一次试验中几乎是不会发生的。例如,在10000件的产品中,如果只有1件是次品,那么可以得知,在一次试验中随机抽取1件次品的概率就为此概率是非常小的。或者是说,在一次随机抽样试验中,次品几

第 2 页,共 26 页 之间的关系不仅是正的,而且是统计上显著的,那么所建立的回变量随变量一起变化,并完全依赖于当变量取某个数值时,依确定的关系取相应的值,则称是的函数。由此可见函数关系是一种一一对应的确定性关系。 乎是不会被抽到的。反过来,如果从这批产品中任意抽取1件,恰好是次品,我们就可以断定,

该次品率应该不是很小的,否则我们就不会那么轻易的就能抽到次品。从而,我们就有足够的理由否认产品的次品率是很低的假设。

假设检验的基本步骤为:第一,对所考察总体的分布形式或总体的某些未知参数做出某些假设,称之为原假设。第二,根据检验对象构造合适的检验统计量,并通过数理统计分析确定在原假设成立的条件下该检验统计量的抽样分布。第三,在给定的显著性水平下,根据抽样分布得出原假设成立时的临界值,由临界值构造拒绝域和接受域。第四,由所抽取的样本资料计算样本统计量的取值,并将其与临界值进行比较,从而对所提出的原假设做出接受还是拒绝的统计判断。

假设检验就是利用样本中所蕴含的信息对事先假设的总体情况做出推断。假设检验不是毫无根据的,而是在一定的统计概率下支持这种判断。

5. 在研宄方法上,参数估计与假设检验有什么相同点和不同点?

【答案】(1)参数估计和假设检验的相同点

①是根据样本信息推断总体参数;

②都以抽样分布为理论依据,建立在概率论基础之上的推断,推断结果都有风险;

③对同一问题的参数进行推断,使用同一样本、同一统计量、同一分布,因而二者可以相互转换。

(2)参数估计和假设检验的不同点

①参数估计是以样本资料估计总体参数的可能范围,假设检验是以样本资料检验对总体参数的先验假设是否成立;

②区间估计求得的是以样本估计值为中心的双侧置信区间,假设检验既有双侧检验,也有单侧检验;

③区间估计立足于大概率,通常以较大的把握程度(可信度)去估计总体参数的置信区间;假设检验立足于小概率,

通常是给定很小的显著性水平去检验对总体参数的先验假设是否成立。

6. 考虑总体参数的估计量,简述无偏估计量与最小方差无偏估计量的定义。

【答案】①无偏性(unbiasedness )是指估计量抽样分布的数学期望等于被估计的总体参数。设总体参数为所选择的估计量为如果则称为的无偏估计量。对于待估参数,不同的样本值就会得到不同的估计值。这样,要确定一个估计量的好坏,就不能仅仅依据某次抽样的结果来衡量,而必须由大量抽样的结果来 衡量。对此,一个自然而基本的衡量标准是要求估计量无系统偏差。尽管在一次抽样中得到的估计值不一定恰好 等于待估参数的真值,但在大量重复抽样时,所得到的估计值平均起来应与待估参数的真值相同,即希望估计量 的均值应等于未知参数的真值,这就是无偏性的要求。 ②最小方差无偏估计是在无偏估计类中使均方误差达到最小的估计量,即在均方误差

是的一个无偏估计量,都有

第 3 页,共 26 页 最小意义下的最优估计,它是在应用中人们希望寻求的一种估计量。设若对于的任一方差存在的无偏估计量

则称是的一致最小方差无偏估计。

二、计算题

7. 某灯泡厂对生产的10000只日光灯进行质量检验,随机抽取100只,测得灯管的平均发光时间为2000小时,发光时间的标准差为50小时。在

多少?其估计的概率保证程度又是多大?

【答案】(1)在的概率保证下,这批灯管平均发光时间的置信区间为:

即(1990,2010)小时。

(2)假如最大允许误差不超过15小时,

则这批灯管的平均发光时间范围是

小时。

所以估计的概率保证程度为

8. 设样本取拒绝域

(2)若

求当来自总体 时,犯第二类错误的概率。 其中为未知参数。对于检验 即的概率保证下,试估计这批灯管平均发光时间的范围。如果要求 最大允许误差不超过15小时,试问这批灯管的平均发光时间范围又是(1)求c 使检验的显著性水平

【答案】(1)由已知条件得,检验统计量z 的值为:

拒绝域为由于已知的拒绝域为

(2)当时,犯第二类错误的概率为:

则:

第 4 页,共 26 页