当前位置:问答库>考研试题

2017年西北师范大学物理与电子工程学院813量子力学(含原子物理)之量子力学导论考研冲刺密押题

  摘要

一、简答题

1. 什么是费米子? 什么是玻色子? 两者各自服从什么样的统计分布规律?

【答案】费米子是自旋为半奇数的粒子,玻色子是自旋为整数的粒子. 费米子遵守费米-狄拉克统计规律,玻色子遵从玻色-爱因斯坦统计规律.

2. 斯特恩—革拉赫实验证明了什么? 【答案】(1)半整数内禀角动量在存在。 (2)空间量子化的事实。

(3)电子自旋磁矩需引入2倍关系。

3. 自发辐射和受激辐射的区别是什么?

【答案】自发辐射是原子处于激发能级时,可能自发地跃迁到较低能级去,并发射出光子的过程;

受激辐射是处于激发能级

低能级的。

4. 什么是定态?若系统的波函数的形式为处于定态?

【答案】体系能量有确定的不随时间变化的状态叫定态,定态的概率密度和概率流密度均不随时间变化. 不是,体系能量有E 和-E 两个值,体系能量满足一定概率分布而并非确定值.

5. 试表述量子态的叠加原理并说明叠加系数是否依赖于时空变量及其理由. 【答案】量子态的叠加原理:若仍然为粒子可能处于的态.

叠加系数不依赖于时空变量. 因为量子态的叠加原理已经明确说明了是任意线性组合,即表明了叠加系数不依赖于任何变量.

的原子被一个频率为的光子照射,受激发而跃迀到较

同时发射出一个同频率的受激光子的过程。受激辐射的光子是相干的,自发辐射是随机

问是否

为粒子可能处于的态,那么这些态的任意线性组合

6. 请用泡利矩阵满足角动量对易关系。 【答案】电子的自旋算符

其中,

定义电子的自旋算符,并验证它们

7. 分别写出非简并态的一级、二级能量修正表达式。 【答案】

8. 厄米算符的本征值与本征矢

分别具有什么性质?

【答案】本征值为实数,本征矢为正交、归一和完备的函数系。

9. 写出测不准关系,并简要说明其物理含义。 【答案】

测不准关系

物理含义:若两个力学量不对易,则它们不可能同

时有确定的测值。

10.将描写的体系量子状态波函数乘上一个常数后,所描写的体系量子状态是否改变? 【答案】不改变。根据

对波函数的统计解释,描写体系量子状态的波函数是概率波,由于

粒子必定要在空间中的某一点出现,所以粒子在空间各点出现的概率总和等于1,因而粒子在空间各点出现概率只决定于波函 数在空间各点的相对强度。

二、证明题

11.证明厄密算符的本征值是实数。量子力学中表示力学量的算符是不是都是厄密算符? 【答案】以表示的本征值

由此得

表示所属的本征函数,则

即是实数。

因为是厄密算符,于是有

12.试证明,表象经么正变换后,不改变算符本征值。 【答案】设可得:

(其中

为幺正变换,则:

可见,本征值不变。

三、计算题

13.设限制在边长为L 的立方体中的单粒子的本征能量与本征波函数是已知的,其中基态是非简并的,而第一激发态与第二激发态都是3重简并的. 具体而言,基态的本征能量与轨道波函数分别为

第1激发态的本征能量与轨道波函数分别为

第2激发态的本征能量与轨道波函数分别为且前三个单粒子能级是等间隔的.

设由4个上述单粒子构成的全同粒子体系,限制在边长为L 的立方体中. 计算体系的较低的2个本征能量及相应的简并度.

【答案】题中并未给出粒子是费米子还是玻色子,故分两种情况讨论: 由题意可知(1)粒子为费米子

此时粒子应该遵守泡利不相容原理,每个波函数最多容下两个粒子. 体系最低能量:对应波函数有

其简并度为6. 体系第一激发态能量(2)粒子为玻色子

此时粒子不受泡利不相容原理约束, 体系最低能量:体系第一激发态能量为:

14.空间中有一势场射)。 (1)写出

时,被散射粒子的渐近波函数

的表达式;如果已知散

它在其简并度为1.

其简并度为3.

时趋于零. 一质量为m 的自由粒子被此势场散射(弹性散其简并度为:3×3=9.

(2

)从被散射粒子的渐近波函数射振幅

求微分散射截面

读出散射振幅

【答案】(1)该渐进波函数为

其中