当前位置:问答库>考研试题

2016年浙江师范大学工学院、职业技术教育学院888运筹学考研冲刺密押卷及答案

  摘要

一、选择题

1. 某一线性规划问题中的某一资源的影子价格为4,当其可用量在其灵敏度允许范围内增加一

,下述正确的是( )个单位时(假 定资源获得价格不变)。

A. 收益减少4个单位

B. 收益增加4个单位

C. 最优解不会发生变化

D. 产量一定增加4个单位

【答案】B

【解析】某种资源的影子价格的经济意义是在其他条件不变的情况下,单位资源变化所引起的目标函数的最 优值的变化。

2. 运输问题中,m+n-l个变量构成基本可解的充要条件是它不含( )。

A. 松弛变量

B. 多余变量

C. 闭回路

D. 圈

【答案】C

【解析】位于闭回路上的一组变量,它们对应的运输问题约束条件的系数列向量线性相关,因而在运输问题基可行解的迭代过程中,不允许出现全部顶点由填有数字的格构成的闭回路。也就是说,在确定运输问题的基可行解时,除要求基变量的个数为(m+n-l)外,还要求运输表中填有数字的格不构成闭回路。

3. 关于对偶问题,下列叙述错误的有( )

A. 根据对偶问题的性质, 当原问题为无解时, 其对偶问题无可行解; 反之当对偶问题无可行解, 其原问题具有无界解。

B. 若线性规划的原问题有多重最优解,则其对偶问题也一定具有多重最优解。

C. 己知y 飞为线性规划的对偶问题的最优解,若y*j>0,说明在最优生产计划中第j 种资源己完全耗尽

D. 若某种资源的影子价格等于k ,在其他条件不变的情况下,当种资源增加5个单位时,相应的目标函 数只讲增大sk

【答案】A

【解析】当原问题(对偶问题)无可行解时,对偶问题(原问题)或具有无界解或无可行解。 4. 单纯形法中,关于松弛变量和人工变量,以下说法正确的是( )。

A. 在最后的解中,松弛变量必须为0,人工变量不必为0

B. 在最后的解中,松弛变量不必为0,人工变量必须为0

C. 在最后的解中,松弛变量和人工变量都必须为0

D. 在最后的解中,松弛变量和人工变量都不必为0

【答案】B

【解析】松弛变量是在约束不等式号的左端加入的,在最后的解中,其值可以不必为0; 人工变量是在原约束条件为等式的情况下加入的,只有基变量中不再含有非零的人工变量时,原问题才有解,所有最后的解中人工变量必须为0。

5. 若f 是G 的一个流,K 为G 的一个割,且f 的流量等于K 的容量,则K 一定是( )。

A. 最大流

B. 最大割

C. 最小流

D. 最小割

【答案】D

【解析】网络从发点到收点的各通路中,由容量决定其通过能力,最小割集则是这些路中的咽喉部分,或者叫瓶口, 其容量最小,它决定了整个网络的最大通过能力。

6. 网络计划中的某工序(i ,j ),估计的最乐观时间为a ,最可能时间为m ,最保守时间为b ,则该工序的 期望工时和方差可以按下面( )计算。

【答案】A

二、计算题

7. 今要建立一个企业,有四个投资方案,三种自然状态,投资数量见表。用矩阵法进行决策。

表,单位(百万元)

【答案】记I 为投资数量矩阵,P 为概率矩阵,E 为期望矩阵; 投资方案A i (i=1,2,3,4)的期望值为E i ,由题意得

因为

是无可行解?

(1)

,所以用矩阵法进行决策的最优投资方案A 4。8. 用图解法求解下列线性规划问题,并指出问题是具有惟一最优解、无穷多最优解、无界解还

(2)

(3)

(4)