当前位置:问答库>考研试题

2018年湖南科技大学物理与电子科学学院830量子力学考研核心题库

  摘要

一、简答题

1. 分别说明什么样的状态是束缚态、简并态与负宇称态?

【答案】当粒子的坐标趋向无穷远时,波函数趋向零,称之为粒子处于束缚态。若一个本征值对应一个以上的本征态,则称该本征值是简并的,所对应的本征态即为简并态,本征态的个数就是相应的简并度。将波函数中的坐标变量改变一个负号,若新波函数与原波函数相差一个负号,则称其为负宇称态。

2. 什么是量子跃迁?什么是选择定则?线偏振光和圆偏振光照射下的选择定则有什么区别? 【答案】量子跃迁是指在某种外界作用下,体系在不同的定态之间跃迁。

选择定则:从一个定态到另一个定态之间的跃迁概率是否为零,也即跃迁是否是禁戒的。 线偏振光选择定则:

圆偏光选择定则:

二、计算题

3. 在并将矩阵

的共同表象中,算符4的矩阵为对角化.

其中本征函数:

的本征值和归一化的本征函数,

【答案】(1)设的本征方程为:

容易解得的本征值和相应的本征态矢分别为

(2)将

表象中

的三个本征矢并列,得到从

表象到

表象变换矩阵

利用变换公式:

得到的对角化矩阵

4. 设t=0

时刻氢原子处于

状态,其中子哈密顿算符的正交归一化本征波函数. 求:(1) t=0时刻,体系能量的平均值.

(2)t=0时刻,体系角动量平方的平均值.

(3)t=0时刻,体系角动量x 分量的平均值. (4)

时刻,

体系所处的状态

【答案】(1)由题意可知n=2,

3

故t=0时,体系能量平均值为

(2)由题意知1=1,2则

的平均值为

(3)由关系式

另外,由正交归一条件有

故t=0时平均值为

(4)时刻体系所处的状态为

是氢原

5. 一质量为m 的粒子,可在宽为a 无限深势阱当中自由运动. 在t=0的初始时刻其波函数为

其中A 为实常数. (1)求A 使平均值?

(3)求t 时刻的波函数

满足归一化条件.

(2)如果进行能量测量,则能得到哪些能量值? 相应取这些能量值的概率又是多少? 再计算能量的

【答案】(1)无限深方势阱中粒子的本征波函数为初始时刻波函数可化为

由归一化条件有

(2)无限深方势阱中粒子的本征能量为

解得

.

故粒子可能测得能量即

测得能量的平均值为(3) t 时刻波函数为