当前位置:问答库>考研试题

2017年聊城大学数学科学学院814高等代数考研冲刺密押题

  摘要

一、选择题

1. 设线性方程组

的解都是线性方程组

的解空间分别为

的解,则( )。

所以

即证秩 2. 设

A. 合同且相似 B. 合同但不相似 C. 不合同但相似 D. 既不合同,也不相似 【答案】B

【解析】A 、B 都是实对称矩阵,易知

所以A 的特征值为3,3,0;而

B 的特征值为1,1,0,所以A 与B 合同,但不相似.

3. 设A 、B 为满足AB=0的任意两个非零矩阵. 则必有( ).

A.A 的列向量组线性相关,B 的行向量组线性相关 B.A 的列向量组线性相关,B 的列向量组线性相关 C.A 的行向量组线性相关,B 的行向量组线性相关 D.A 的列向量组线性相关,B 的列向量组线性相关 【答案】A 【解析】方法1:设由于

不妨设线性相关.

第 2 页,共 45 页

【答案】(C ) 【解析】设

则A 与B ( ).

并记A 各列依次为

由于AB=0可推得AB 的第一列

从而

又由方法2:设考虑到

由已知及以上证明知B ’的列线性相关,即B 的行向量组线性相关.

由于AB=0, 所以有

即r (A )>0, r (B )>0, 所以有

R (A )

故A 的列向量组及B 的行向量组均线性相关.

4. 设A 、B 、C 均为n 阶矩阵,E 为n 阶单位矩阵,如B=E+AB, C=A+CA, 则B —C 为( ).

A.E B.-E C.A D.-A

【答案】A

【解析】由题设(E-A )B=E, 所以有

B (E-A )=E.

又C (E-A )=A,故

(B-C )(E-A )=E-A.

结合E-A 可逆,得B-C=E.

5. 设A 、B 均为2阶矩阵,A*,B*分别为A 、B 的伴随矩阵. 如果阵

A. B. C. D. 【答案】B 【解析】由题设

可逆,由于

的伴随矩阵为( ).

则分块矩

所以

二、分析计算题

第 3 页,共 45 页

6. 设

其中当

证明:与A 可交换的矩阵只能是对角矩阵. 【答案】令

与A 可交换. 计算

由AB = BA, 则对任意由于

7. 设

必然

故B 只能是对角阵.

是两两互异的数,证明如下方程组有唯一解,并求它的解

.

【答案】方程组的系数行列式

故方程组有唯一解. 设方程组的唯一解为由(3-14)知

令多项式

由韦达定理,得

第 4 页,共 45 页