2017年闽南师范大学数学与统计学院615分析与代数之高等代数考研冲刺密押题
● 摘要
一、选择题
1. 设
A. 合同且相似 B. 合同但不相似 C. 不合同但相似 D. 不合同不相似 【答案】A
【解析】因为A ,B 都是实对称阵,且B 有4个特征值
又因为即A 也有4个特征值0,0,0,4. 因而存在正交阵
其中
故A 〜B.
再由
是正交阵,知T 也是正交阵,从而有
且由①式得
则A 与B ( ).
使
因此A 与B 合同.
2. 设A 为n 阶可逆矩阵,交换A 的第1行与第2行得B ,则有( ).
A. 交换A*的第1列与第2列得B* B. 交换A*的第1行与第2行得B* C. 交换A*龙第1列与第2列得-B* D. 交换A*的第1行与第2行得-B* 【答案】C
【解析】解法1:题设P (1, 2)A=B,所以有
第 2 页,共 44 页
分别为A ,B 的伴随矩阵,
又
所以有
即A*右乘初等阵P (1,2)得-B*
解法2:题设P (1,2)A=B,所以丨B 丨=-丨A 丨. 因此
即
3. 设行列式
为f (X ),则方程,f (x )=0
的根的个数为( ) A.1 B.2 C.3 D.4 【答案】B
【解析】因为将原行列式的第1列乘(-1)分别加到其他3列得
4. 设向量组
线性无关,则下列向量组中,线性无关的是(
【答案】C 【解析】方法1:令
则有
由
线性无关知,
第 3 页,共 44 页
)
该方程组只有零解方法2:对向量组C ,由于
从而
线性无关,且
因为所以向量组线性无关.
5. 设A 、B 为满足AB=0的任意两个非零矩阵. 则必有( ).
A.A 的列向量组线性相关,B 的行向量组线性相关 B.A 的列向量组线性相关,B 的列向量组线性相关 C.A 的行向量组线性相关,B 的行向量组线性相关 D.A 的列向量组线性相关,B 的列向量组线性相关 【答案】A 【解析】方法1:设由于
又由方法2:设考虑到
不妨设线性相关.
由已知及以上证明知B ’的列线性相关,即B 的行向量组线性相关.
由于AB=0, 所以有
即r (A )>0, r (B )>0, 所以有
R (A ) 故A 的列向量组及B 的行向量组均线性相关. 并记A 各列依次为 由于AB=0可推得AB 的第一列 从而 线性无关. 二、分析计算题 6. 设A 为顺序主子式都不是0的n 阶方阵. 证明:A 可唯一分解成A=FDS, 其中D 为可逆对角方阵,F 与S 分别为主对角线上元素全是1的下与上三角形方阵. 【答案】由上题知,A 可分解为可逆下、上三角形方阵B , C 之积. 于是 即得. 第 4 页,共 44 页
相关内容
相关标签