当前位置:问答库>考研试题

2017年闽南师范大学数学与统计学院615分析与代数之高等代数考研冲刺密押题

  摘要

一、选择题

1. 设

A. 合同且相似 B. 合同但不相似 C. 不合同但相似 D. 不合同不相似 【答案】A

【解析】因为A ,B 都是实对称阵,且B 有4个特征值

又因为即A 也有4个特征值0,0,0,4. 因而存在正交阵

其中

故A 〜B.

再由

是正交阵,知T 也是正交阵,从而有

且由①式得

则A 与B ( ).

使

因此A 与B 合同.

2. 设A 为n 阶可逆矩阵,交换A 的第1行与第2行得B ,则有( ).

A. 交换A*的第1列与第2列得B* B. 交换A*的第1行与第2行得B* C. 交换A*龙第1列与第2列得-B* D. 交换A*的第1行与第2行得-B* 【答案】C

【解析】解法1:题设P (1, 2)A=B,所以有

第 2 页,共 44 页

分别为A ,B 的伴随矩阵,

所以有

即A*右乘初等阵P (1,2)得-B*

解法2:题设P (1,2)A=B,所以丨B 丨=-丨A 丨. 因此

3. 设行列式

为f (X ),则方程,f (x )=0

的根的个数为( ) A.1 B.2 C.3 D.4 【答案】B

【解析】因为将原行列式的第1列乘(-1)分别加到其他3列得

4. 设向量组

线性无关,则下列向量组中,线性无关的是(

【答案】C 【解析】方法1:令

则有

线性无关知,

第 3 页,共 44 页

该方程组只有零解方法2:对向量组C ,由于

从而

线性无关,且

因为所以向量组线性无关.

5. 设A 、B 为满足AB=0的任意两个非零矩阵. 则必有( ).

A.A 的列向量组线性相关,B 的行向量组线性相关 B.A 的列向量组线性相关,B 的列向量组线性相关 C.A 的行向量组线性相关,B 的行向量组线性相关 D.A 的列向量组线性相关,B 的列向量组线性相关 【答案】A 【解析】方法1:设由于

又由方法2:设考虑到

不妨设线性相关.

由已知及以上证明知B ’的列线性相关,即B 的行向量组线性相关.

由于AB=0, 所以有

即r (A )>0, r (B )>0, 所以有

R (A )

故A 的列向量组及B 的行向量组均线性相关.

并记A 各列依次为

由于AB=0可推得AB 的第一列

从而

线性无关.

二、分析计算题

6. 设A 为顺序主子式都不是0的n 阶方阵. 证明:A 可唯一分解成A=FDS, 其中D 为可逆对角方阵,F 与S 分别为主对角线上元素全是1的下与上三角形方阵.

【答案】由上题知,A 可分解为可逆下、上三角形方阵B , C 之积. 于是

即得.

第 4 页,共 44 页