2017年天津师范大学心理学院心理与教育统计学(加试)复试仿真模拟三套题
● 摘要
一、概念题
1. 描述统计
【答案】描述统计指研宄如何整理心理教育科学实验或调查的数据,描述一组数据的全貌,表达一件事物的性质的统计方法。比如整理实验或调查来的大量数据,找出这些数据分布的特征,计算集中趋势、离中趋势或相关系数等,将大量数据简缩,找出其中所传递的信息。
2. 协方差分析
【答案】协方差分析指回归分析与方差分析相结合的一种统计分析方法。是将难以直接控制的变量作为协变量影响的条件下,更准确地分析与评价因素对因变量的影响。它与方差分析的不同之处在于:方差分析的各因素水平可以根据需要和实际情况人为地加以控制,而在协方差分析中,某些因素的水平是不能控制或难以控制的。如在考察不同教学方法对学生学习成绩有无显著性影响的过程中,如果只考虑教学方法对学生学习成绩的作用,而不考虑学生的智力水平和学习基础这两个不能精确控制的因素对学生学习成绩的影响,将会影响判断的准确性。协方差分析可以消除这种不可控因素的影响,提高分析的精度。教学方法是可以人为控制的因素,称为方差因素,而学生的智力和学习基础是不能精确控制的因素,称为协变量。协方差分析的基本方法是先对每一水平下的实验结果进行回归分析,求出扣除协变量以后的残值,再将各水平试验下对应的残值进行方差分析。协方差分析适合于完全随机化设计资料、随机化区组设计资料、拉丁方资料等。
3. 非参数检验
【答案】非参数检验指对总体分布形式所知甚少,需要对未知分布函数的形式及其他特征进行假设检验。常见的非参数检验有符号检验、秩和检验、中数检验等。其优点:(1)不需要对被检验的总体作出关于正态性或其他特定分布的假定;(2)容易理解、容易操作、应用范围广。缺点是功效较低,因为它常会丢失数据中的信息。经常属于大样本检验。
二、简答题
4. 各种差异量数各有什么特点?
【答案】(1)标准差计算最严密,它根据全部数据求得,考虑到了每一个样本数据,测量具有代表性,适合代数法处理,受抽样变动的影响较小,反应灵敏。缺点是较难理解,运算较繁琐,易受极端值的影响。
(2)方差的描述作用不大,但是由于它具有可加性,是对一组数据中造成各种变异的总和的测量,通常采用方差的可加性分解并确定属于不同来源的变异性,并进一步说明各种变异对总结果的影响。因此,方差是推论统计中最常用的统计量数。
(3)全距计算简便,容易理解,适用于所有类型的数据,但它易受极值影响,测量也太粗糙,只能反映分布两极端值的差值,不能显示全部数据的差异情况,仅作为辅助量数使用。
(4)平均差容易理解,容易计算,能说明分布中全部数值的差异情况,缺点是会受两极数值的影响,但当数据较多时,这种影响较小,因有绝对值也不适合代数方法处理。
(5)百分位差易理解,易计算,不易受极值影响,但不能反映出分布的中间数值的差异情况,也仅用作补助量数。
(6)四分位差意义明确,计算方便容易,对极端值不敏感,较不受极端值影响。当组距不确定,其他差异量数都无法计算时,可以计算四分位差。但是,四分位差无法反映分布中所有数据的离散状况,不适合使用代数方法处理,受抽样变动影响较标准差大。
通过比较,可以发现标准差、方差价值较大,它们的应用也比较广泛,因此,一般称标准差、方差为高效差异量。相比较而言,其他差异量数,如全距、平均差、百分位差和四分位差等缺点比较明显,应用也受到限制,故称他们为低效差异量数。
5. 圆形图适合哪种资料? 自选数据绘制圆形图。
【答案】圆形图(circle graph), 又称饼图(pie ),主要用于描述间断性资料,目的是为显示各部分在整体中所占的比重大小,以及各部分之间的比较。)圆形图显示的资料多以相对数(如百分数)为主。
6. 简述非参数检验的意义和常用方法。
【答案】(1)非参数检验是针对那些总体分布不能用有限个实参数来刻画,而只能对其作一些诸如分布连续、有密度、具有某阶矩等一般性假定的统计问题。
非参数检验的意义在于非参数统计问题中对总体分布的假定要求的条件很宽,因而使得针对这种问题而构造的非参数统计方法,不致于因为对总体分布的假定不当而导致重大错误,所以它往往有较好的稳健性。但正是因为非参数统计方法需要照顾范围很广的分布,在某些情况下会导致其效率的降低。不过,近代理论证明:当一些重要的非参数统计方法,当与相应的参数方法比较时,即使在最有利于后者的情况下,其效率上的损失也很小。
(2)非参数检验的常用方法有:
用来检验样本随机性的非参数检验:单样本游程检验;
与参数检验中独立样本的t 检验相对应的秩和检验法;
与参数检验中两独立样本平均数之差的t 检验相对应的中数检验法;
与参数检验中配对样本差异显著性t 检验相对应的符号检验法以及符号等级检验法; 与参数方法中的完全随机方差分析相对应的克-瓦氏单方向方差分析;
与参数方法中的随机区组方差分析相对应的弗里德曼双向等级方差分析。
7. 如何区分点二列相关与二列相关?
【答案】(1)点二列相关法(point-biserail correlation)就是考察两列观测值一个为连续变
量(点数据),另一个为“二分”称名变量(二分型数据)之间相关程度的统计方法。
二列相关法(biserail correlation)就是考察两列观测值一个为连续变量(点数据),另一个也是连续变量不过被按照某种标准人为的划分的二分变量之间相关程度的统计方法。
(2)点二列相关与二列相关的区别
二列相关不太常用,但有些数据只适用于这种方法。在测验中,二列相关常用于对项目区分度指标的确定。有时,某一题目实际获得的测验分数是连续性测量数据,这些分数的分布为正态,当人为地根据一定标准将其得分划分为对与错、通过与不通过两个类别时,计算该题目的区分度就要使用二列相关。如果题目的类型属于错与对这样的是非类客观选择题,计算该题目的区分度就应该选用点二列相关。二者之间的主要区别是二分变量是否为正态分布。总的原则是,如果不是十分明确,观测数据的分布形态是否为正态分布,这时,不管观测数据代表的是一个真正的二分变量,还是一个基于正态分布的人为二分变量,这时就用点二列相关。当确认数据分布形态为正态分布时,都应选用二列相关。只要有任何疑问,选用点二列相关总是较好的选择。在实际的研究当中,二列相关很少使用。
8. 学业考试成绩为X ,智力测验分数为y ,已知这两者的rxy=0.5, IQ=100+15z, 某学校根据学
,录取率为15%,若一个智商为115的学生问你他被录取的可能性为多少,业考试成绩录取学生
你如何回答他?
【答案】由
为可以看出学业考试成绩与智力测验分数只存在中等相关且可知测定系数即学业成绩的变异中只有25%由智商引起,也就是智力测验分数的多少不能作
智商为115, 由可以得出z=l。这个标准分数显示了这个学生在同龄儿童中的相为预测学业考试成绩的较好指标。 对位置,说明这个学生处于同龄学生构成的常模中一个标准差的位置。大概在0.3413的位置,按照正态分布表,其以上还有大约15.87%的人数。因此,如果某学校根据学业考试成绩录取学生,录取率为15%,那么这个学生很有可能录取不上。但是由于智力测验只代表某种程度上的智力表现,而且学校的学业测验与智力测验相关系数不大,所以只能作为参考,不能用来计算和预测。应该告诉他不要迷信测验,认真备考,任何可能性都有。
9. 探索性因素分析与验证性因素分析有什么区别?
【答案】(1)探索性因素分析(简写为EFA )就是指传统的因素分析。这种因素分析方法对于观察变量因子结构的寻找,并未有任何事前的预设假定。对于因子的抽取、因子的数目、因子的内容以及变量的分类,研究者也没有事前的预期,而是由因素分析的程序去决定。在典型的EFA 中,研究者通过共变关系的分解,找出最低限度的主要成分()或共同因子(),然后进一步探讨这些主成分或共同因子与
, )个别变量的关系,找出观察变量与其相对应因子之间的强度,也就是因子负荷值
(
以说明因子与所属的观察变量的关系,决定因子的内容,为因子取一个合适的名字。
由于传统的因素分析企图找出最少的因子来代表所有的观察变量,因此研究者必须在因子
相关内容
相关标签